
70 3 0 87/_//_
\ A< \ .31' . .....

FIFTH ANNUAL

NASA-UNIVERSITY CONFERENCE

ON MANUAL CONTROL

COPY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

CAMBRIDGE, MASSACHUSETTS

' _ - 27-29..<_la*_h 1%9

xraq'](;XrA1 AER()N?-\I J'F!(-2S ' _::J,N_ _ SI)A(;E AL)MIN[STRATION



NASA SP-215

FIFTH ANNUAL

NASA-UNIVERSITY CONFERENCE

ON MANUAL CONTROL

March 27-29, 1969

Sponsored jointly by

NATIONAL AERONAUTICS AND

SPACE ADMINISTRATION

and

MASSACHUSETTS INSTITUTE of TECHNOLOGY

Scientific and Technical Information Division

OFFICE OF TECHNOLOGY UTILIZATION 1970

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C.



Foreword

This volume contains the proceedings of the Fifth Annual NASA-
University Conference on Manual Control held on March 27, 28 and 29,

1969, at the Massachusetts Institute of Technology, Cambridge,

Massachusetts. Some one hundred specialists from the United States,

Canada, Germany, and Holland attended the conference. The program was

divided into the following sessions: quasi-linear models, display systems,

optimal control methods, adaptive and discrete models, human performance

theory, neuromuscular models, monitoring, and applications. Both formal

and informal presentations were made; most of the formal papers are in-
cluded in this volume.
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1. Identification of HumanOperatorModels by
Stochastic Approximation*

C. B. Neal t

Hughes Aircraft Company

G. A. Bekey

University of Southern California

ABSTRACT

This paper discusses the application of stochastic approximation to the

estimation of human operator model parameters. Both continuous and sampled-

data models are considered. Stochastic approximation was used successfully for

parameter estimates in both types of models. In the case of sampled data models,

all parameters, including the sampling interval, have been estimated.

I. INTRODUCTION AND BACKGROUND

Stochastic approximation is a recursive estimation procedure which can be

applied to the statistical problem of (1) finding the value of a parameter which
0_II_ nn llnlc1"1(3wn nnJ_v r_o"r'_._.qJnn fllnOJ"inn f_ f_-_, _,n c_nmu n_cz_{cJ'_ '_7.111_

or (2) finding the value of a parameter which minimizes the unknown noisy regres-

sion function. Basic work on the former problem was done by Robbins and Monro

(ref. 1) and on the latter by Kiefer and Wolfowitz (ref. 2). Subsequently, applica-

tion and extension of the Kiefer and Wolfowitz work to the problems of system

modeling, data filtering, and data prediction have been done by Sakrison (refs. 3

and 4), Kushner (ref. 5), Gardner (ref. 6), Kirvaitis (ref. 7), Holmes

(refs. 8 and 9), Saridis and Stein (ref. 10), and others. In applying stochas-

tic approximation to the parameter estimation problem, Sakrison (ref. 11),

extended Dupae's (ref. 12) scalar parameter work in mathematical statistics

to the vector parameter case, and established conditions for mean-squared

convergence of model parameters to nonlinear system parameters. He

treated such error measures as error-squared, magnitude error, and error

to the fourth power. He gave, as an example, the design of a linear prediction

filter where the gain multipliers of k linearly independent stable, linear

transfer functions were obtained by stochastic approximation.

Kirvaitis (ref. 7) used model matching and stochastic approximation to

estimate the parameters of both linear and nonlinear differential equations from

*This research was supported in part by the National Aeronautics and Space Ad-

ministration under Grant No. NASA-NGR 05-018-022.

tThis work was done while the first author was attending the University of Southern

California on a North American-Rockwell Full Study Fellowship.



sampledsequencesof noisy state measurements. Kushner (ref. 5) useda finite
memory model andobtainedestimatesof theparameters of linear time-varying
systems. Heaccountedfor neglectedparameters in the model aswell as input
andoutputmeasurementnoise. Holmes(ref. 8) representedthe unknownsystem
by a discrete Volterra series expansionin terms of tlm ,or_,,g................... ,u,,t_,u_, cad un-

known kernel function and obtained estimates of the kernel function. In all the

above work it was required that state vector observation noise have zero mean

and finite variance. Further, the system parameters had to belong to a compact
convex set.

The work of Kirvaitis (ref. 7) is most closely related to the present work.

In addition to considering systems with sampling, we place restrictions on the

continuous portion of the sampled data system which give rise to equations and

inequalitie s _which he states as as sumptions.

If. STATEMENT OF THE PROBLEM

Consider the problem of identifying the parameters of a sampled-data sys-

tem. The class of sampled-data systems considered here have continuous inputs

and outputs, with continuous, possibly nonlinear, dynamic elements within the

loop, together with error-sampling and data hold. We desire to obtain sufficient

conditions for mean-square convergence of a Kiefer-Wolfowitz stochastic approx-

imation algorithm for estimating all parameters of the sampled-data system,

including the sampling interval.

The continuous portion of the sampled-data system is described by

dz

dt -f(z, p, u(t)); z(t=0)=_, (1)

where z is an n-dimensional vector, p is an h-dimensional vector of unknown

parameters, and u(t) is a scalar control vector. If we restrict the data hold

to zero order, then u(t) is piecewise constant. In general, _ may not be

known. Corresponding to the above sampled-data system, we formulate a

model of the system, with continuous dynamics given by

d_ _A /% A
-_ = z, p, u(t)); _(t=0) = _', (2)

where the vectors have the same definitions and dimensions as in (1). We shall

assume that the form of the system is known as a priori. Thus _(" ) and f(" )

are similar functions.

The model-matching parameter estimation configuration is given by

Figure 1, where the input r(t) is a scalar and the state vectors z(t) and _(t)

4
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are n-dimensional vectors with continuous components. Define the m-dimen-

sional parameter vectors of the sampled-data system and sampled-data

model by

x = (p,T, _) (3)
and

= (_, T, (4)

A

respectively, where m < (2n + 1), where T and T are the sampling periods of

the sampled-data system and sampled-data model respectively, and where

( - ) indicates the transpose of a vector. Let the state observation vector of

the sampled-data system be given by

v(t;x, r(t)) = z(t; x, r(t)) + n l(t), (5)

where nl(t ) is the vector of state observation noise. Further we define

¢(t; x, x, r(t)) = v(t;x,r(t))-_(t;x _, r(t)), (6)

as the (random) error vector between observed system state vector and the

model state vector. In order to measure the validity of the model as a

representation of the system, we use an integral norm-squared error cost

function, which during the n-th cycle of iteration is given by

t + Z
n

+ T;tn, x, 2,/r(t)) = ¢(t;x, s, r(t))W (t;_, r(t)) dt, (7)J(t
d

t
n

where W is a positive definite diagonal weighting matrix with positive terms,

and • is the fixed iteration interval, here taken to be much larger than our
A

initial estimate (_.)of the sampling interval T.
.L

We can now state the problems as follows: Given the system of (1) its

assumed mathematical model of equation (2), with f(. ) functionally similar to

f(.), and the cost function of equation (7), determine conditions tinder which a
vector Xn whichstochastic approximation procedure yields a model parameter ^

becomes an optimum estimate of the system parameter vector x as the iteration

number n_ oo.

III. A STOCHASTIC APPROXIMATION ALGORITHM

The Kiefer-Wolfowitz stochastic approximation algorithm is an iterative

procedure for finding the values of parameters which minimize an unknown



noisy regression function. Its applicationto the problem of the previous section

may be described as follows: During the n-th cycle of iteration (during the in-

terval tn_ t _ t n + 2mr ) we perform the following steps:

_o_ w,_ po_.t_,rh _eh of the m model parameters by increments(+)c ,
thus obtaining the 2 m scalar cost functions l.

and

t -tCZi-1)T
12

YZn+I N ¢(t;x, (_ + e i= c ), r(t))I1 dt, i = 1, 2 . m, (8)

t +_.(i-D r
Yl

p tn+2iTi • 2

Y2n-1 = _|t !s(t; x,. (x-e_Cn)' r(t)),,H_4-dt ' i = 1,2 (9)
"t +(2i- 1)T

n

where the integrands are quadratic forms with the positive definite weighting
matrix W, and where e i is the i th vector eomponent of the m times m matrix

of natural basis vectors

0" " " i![,. 'e = e e .... , c = • (10)

0.

Notice that equation (8) and (9) are random variables.

(b) Using the set of scalar cost function given by equations (8) and (9),

we construct the m-dimensional random vector defined by

k,

1 1

Yzn-1 - Y 2n+l
! e

o ' (ii)
Y2n- l" y 2n+ 1 = n_

13_3

Y'Zn- 1 " y 2n+ 1

(c) Successive estimates _" of the m-dimensional parameter vector
n

x of the sampled-data system are now defined the sequence



A

xn+l = Xn + a_,(YZn..l-YZn + .I)/cn

A

where eachx i(i=l, 2, ..) is a random vector, and a and c
• n n

• positive numbers defined as (refs. 11 and 12),

(12)

are sequences of

1/6
a = A/n, c = C/n , (13)

rl 11

where A and C are positive constants, and n is the sequence of integers 1, 2,

39a, •

Under appropriate restrictions on the functions f(.) and _(.), and on

the observation noise, mean-square convergence of _ to x can be proved
n

(ref. 13).

IV. APPLICATION TO HUMAN TRACKING DATA

Consider now the application of the Kiefer-Wolfowitz stochastic approxi-

mation procedure described above to the problem of estimating the parameters

of a human operator model. Discretized data were obtained from a control

situation involving a human operator in a compensatory task as shown in

figure 2.

In particular the models and parameter estimates given by McRuer

will be used here as a basis for determining the relative advantages of stochastic

approximation in comparison with some of the other parameter estimation
models. The parameters which are to be estimated in this study depend on the

particular model chosen. Candidate models include: (1) sampler, data-hold,

and gain, (2) transport delay and gain, (3) sampler, data-hold, and gain, (4)

transport delay, gain, and lead-lag filter.

Data from actual human operator experiments were obtained from

Systems Technology, Incorporated, Hawthorne, California. Data for the four
variables shown inTable 1 were supplied in discretized form for coincident

sampling time points spaced 0.05 second apart. The results of their human

operator experiments are summarized in Table 1.

8
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Table 2 furnishes the particular form of human operator model (Y_) derived
P

by Systems Technology, Incorporated to correspond to a particular controlled

load (Yc).

Table 1. S.T.I. experiments and results.

S .T .I.
Run Number

671129-09

-01

-03

-05

-07

-11

-15

Y
C

T

(sec)

0.1/s 0. 270

1/s(s+2) 0.264

1/s(s+4) 0. 250

0.1/s 2 0.333

0.1/s(s+l) 0.384

1/s 2 0.330

1/s 2 0.345

Parameters of
Y
P

iTL(Sec) Ti(sec)

0 0

0.5 0

0.25 0

>1 0

1 0

>1 0

>1 0

Functions of
YY
p c

_, =< K era(°)*
C p C

3.1 44

4.2 24

4.2 6

1.5 40

2.8 12

4.0 11

3.3 2O

*crossover phase when YpYc = 1.0

Table 2. Human operator model (Yp).

Controlled Load

Dynamics

ffc )

K
_q
S

Human Operator
(First Approximation Model)

(Yp)

(TLS+l) e-Ts

Kp (Tls+l)

"s(s+p)

K
o

2
s

Kp (s4 _)e -Ts
-L

Kp (S+.Tnl)e-'rs

I0



The tables are to be used together to provide a complete description of a model.

For example, for the controlled load dynamics 0. l/s, the first approximation
mode1 is

(TLS + i) -TS .....27:_

Yp Kp (TIS + ].) e = 31e (14)

S. T. I. has derived four models in order of increasing accuracy: the crossover

model, the first approximation model, the second approximation model, and the
precision model. They are tabulated in reference 14. It should be noted that

great care was exercised by the experimenters to insure that the input signal
was random appearing and Gaussian in character.

The data for two of the four signal points of the human operator

compensatory tracking problem of Figure 2 were used in the modeling studies.

The studies were restricted to using the data for the load Yc = 0.1/s. In order
that the results of this study realistically represent the most difficult modeling

situation, only the scalar input and scalar output variables i(kTq) and m(kTq)
were used.

V. STUDY PROCEDURES

The sequence of experiments was directed at obtaining a simple

optimal model of the unknown human operator from the candidate models of

Table 3. Steps in the sequence were as follows:

lo Use the S. T. I. first order approximation model (equation (14)
and record the cost function obtained at the end of an iteration

interval. Use this number as a standard of comparison for
evaluating the relative merit of other human operator models.

2.

A

Adjust the parameters of the right side of (14), now written as T

and Kp, by stochastic approximation, to assess improvement in
the model as measured by the cost function of equation (7), here
represented by where Ti is the iteration interval.

J = ,,(c(_) _'
(15)

II



Table 3. A comparison of various models of the human

operator in the tracking task of Figure 2.

Model of tIuman Operator
Controller

" - 27a = ^ -Ts

(I)Kpe "
(see note I)

A

(2)Kpe -Ts
(see note 2)

(see note 3)

(see note 4)

Optimal Parameters

I = .27 second
K _ 31.0

P

= .2351

£ 28. 13
P

_= .2604
= 26.40
= 0.29

ks+ _l

(seo note 5)

= .2873

= 31.369= 0.5759

Ml_dmum Cost

Imin

99,634

94,105

101,114

89,075

62,034

Note Ix

Note 2:

Note 3:

Note 4:

Note 5:

Note 6:

This is the S.Y.I. Model,

This Is S.T.I. Model after parameter adjustment by stocha_tt.o
epproxhnatlon.

This iv the r,ampled-data model. Tha Z.O,H. refer5 tea
zero order data-hold.

Yhls Is the samp!c,d-.data model with pha-so lead COml:,_n_atlon

This Is the S.T.I. Model Imp[eyed by phase lead.

Parameter values for modcts 2 through 5 were derived by
moans of stochastic approxhnatlon.

12



3.

A

Represent the human operator by the combination of gain K and
sampler and zero-order ua_a...........1,u_uof period AI._uj_.o_^n"'__iar_ A._,_by

stoehastieapproximation. Referenee Table 3.

. Add linear lead-lag compensations/(s+_)^to the sampled-data model
of (3). Adjust the parameters T, K, and _ by stochastic approxi-
mation.

5. Determine the effect of adding the lead-lag compensator of (4) to

the S. T.I. model. Adjust the parameters _, AKpand _ by stochastic
approximation.

It will be noted that the above experiments are quite simple. However,
this does not limit the generality of the method. The object here is to illustrate

the application of stochastic approximation to the problem of estimating the

parameters of a plant from actual operating data. If desired, the order and

complexity of the candidate model could be increased as long as the cost

function reflected a corresponding decrease after the application of the stochastic
adjustment techniques.

(a) Zero Mean Compensation of Input Signal

The adverse effect of a non-zero mean value of input signal on the con-

vergence rate and bias of the estimate of the sampling interval must be empha-

sized. In order to obtain an input signal i(t) with mean value substantially close

to zero, the running average of the sequence i(kTq) was obtained for each
k = 1, 2, .... Then the smallest k was selected for which the running average

was substantially zero. This was termed ko. The iteration interval Ti was

then fixed at _-i=koTq.

For the data of Table 1, and for Ye = 0. l/s, _- i = 29.4 seconds. Natural-

ly, the particular i(kTq) and m(kT_) sequences were fixed once r i was chosen.q
These same sequences were then used for each iteration of the adjustment
procedure. (The original S. T. I. data traces were 100 seconds in duration. )

(b) Initial Conditions of the Model

The printout of the selected time sequence m(kTq) from the card data
indicated that m(0) = 42.0. Both Zl0 = 42.0 as well as Zl0 = 0 were tried as

model initial conditions. The cost function was about 5 percent lower when

the former was used; hence, this value was used for all modeling experiments.

Actually, the initial conditions could also have been included in the parameter

vector of the model, with proportional increase in the computation time re-

quirements for sequence convergence.

13



VI. RESULTS OF MODELING STUDIES

Table 3 shows the various models of the human operator controller

used in this sequence of experiments. The optimal values of the parameters

are indicated, along with the resulting value of the cost function at the end of

the particular stochastic approximation iterative search sequence. The cost

function, equation (7), measures the fit of the model output to the tracking

•data. Specifically, the cost function was the integral squared error, where

the error is between noisy system and model, and 7 i is the iteration interval.

The adequacy of the different models can be compared by examining the values

of the cost function for a sufficiently large number of data samples.

(a) Discussion of the Modeling Results

Figure 3 shows the results of stochastic approximation adjustment

TAand _p of the S. T. I. transport lag model• Note thatof the parameters

relatively stationary parameter values are achieved after only five iterations.

Controller Model

•3 _ e "s÷

.Z
o

.1

0

0

3O

P
20

l0

0

0

e

• • • . • • • o • • • • •

10 15 ZO

Iterations, n

i I I

10 15 20

Iterations, n

Minimum Cost Function

At _ = O.Z3Z3

= 28.754

P
n = 20

Jmin :Of ''%2 dt = 94,087

(Run 6-30-Z- I)

A
Figure 3 - Estimation of parameters -r and K by stochastic approximation

P
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a

The initial estimate of the parameter Kp was purposely chosen as very small

so that large transient corrections would be induced in the estimation sequence
for both _ and A

Kp and thereby expose local minima in the cost function if the
local minima existed. We conclude that local minima do not exist for the set

of pnrsmeter vectors here calculated because the set of parameters which

minimized the cost function have minimizing values which are close to those of

the S. T. I• model. Furthermore, the cost function is smaller than that realized

with the S. T. I• model for the data samples utilized•

Figure 4 shows the parameter estimates obtained when using the
sampled-data model of the human operator controller•

A A

Figure 4 -- Estimation of parameters T and K using stochastic approximation

.4

.3

.2

.1

0

3O

20

IO

6

• • %

! ,

• •°. °.,... o

t j j

10 ZO 30

Iterations, n

"'?'7 ......... °• ° " " ° °° " ° ........
• o

! I J

20 30 40
Iterations, n

Controller Model

Mini_utT_ Cost At

: o. zs77

= z6.07

n =37

f0 ri
= 2

Jmin ¢ dt = 101, 114

(Ref. Run 7-1-1-1)

Qualitatively, the model appears to be poorer than the transport lag model as

judged by both the larger value of the minimum cost function and the rougher

appearance of the sequential parameter estimates. The minimum cost function

is about 7 percent larger than that obtained w_th the transport lag model of
Figure 3.

15



Figure 5 showsparameter estimates for the sampled-datamodel
with first-order linear lead-lag compensation. The sequenceof the sequential
estimatesof samplinginterval is smoother than that of Figure 4. The cost
function is also about6 percent lower than for the optimal transport lag model
of Figure 5.

0

50

25

5.0

Z.5

0

0

o,

• °J ° .. °,,.,• ,,

. ' ,°o o
• , ,,. o','.°, -°°°

_0 :_0 i i I30 40 50

• °

Iterations, n

° .

• °.

...-. • °.°°°..° ...° ° °°° .. ............ • ...

Controller Model

Minimum Cost At

= 0. 2604

= 26.40

=0.29

n =55

10' _0 I , 1 fT i ez30 40 50
= dt = 89,075

Jmin JOIterations, n
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Figure 5. Estimation of parameters T, K,/3 by stochastic approximation

Finally, Figure 6 shows the transport lag model with lead-lag com-

pensation. Clearly, this is a much better approximation than either of the

sampled-data models as evidenced by the smooth iteration sequences and

the fact that the cost function is about 30 percent smaller than for the better

of the sampled-data models. Compared with the original S. T.I. model, the

cost function is about 37 percent smaller, again, for the particular data

samples here chosen.
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Figure 6. Estimation of _ , _, and _ by stochastic approximation

(b) The Choice of Time-Slice•

The results presented above suggest that the model obtained by

stochastic approximation fits human operator tracking data better than models

heretofore obtained by conventional spectral analysis methods for the particular
data samples used. However, it is also important to note that the data traces

i(kTq) and m(kTq) used for modeling were of 29.4 seconds duration, and were
chosen from the S. T.I. 240-second duration time traces (ref• 14). The parame-

ters of the S. T.I. model were based on data from the entire time interval,

while those of Table3 used a little over one-tenth of the data. It is quite

possible that the parameters that S. T.I. obtained represent an average model,
while our parameters represent the model for the particular subset of data

which we used. In order to examine any possible time-variation of the human

operatorTs behavior, stochastic approximation was applied to successive time
slices of data.

Figure 7 shows the results obtained when three different time slices

of data were used with Model No. 5• As indicated in the figure, the first 15

iterations were performed with the original 29.4 seconds of data. The next

10 iterations utilized 24.75 seconds of data (from 30.0 to 54.75 in the S. T. I.

17
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data). Thefinal 10 iterations utilized 29secondsof data {from 60.0 to 89.0
in the S.T. I. data). Thedots showthe resulting parameter values, while the
x's indicateparameter valuesobtainedfrom 35 repeatediterations with the
dataof Time Slice No. 1. It is evidentthat there is indeedsomevariation in
parameter values. Specifically, the value _ decreases to nearly 50 percent
of the value obtained with Time Slice No. 1.

Similar results were obtained with the sampled-data model (ref. 14).

VII. C ONC LUSIONS

So far as is known, this is the first study where estimates of the

various parameters of linear models of a human operator have been obtained

by stochastic approximation from off-line operating data.

In our work, no difficulty in obtaining convergence was experienced

when the complex human operator controller was represented by relatively
/%

simple models. Furthermore, the optimal estimates of the parameters I"
and Kp, estimated with the simple transport lag model, changed by only 24
percent and 8 percent, respectively, when the compensated transport lag
model was used instead of the simple transport lag model.

From the results of the study it is concluded that the human operator
controller is better represented by the transport lag model, with or without

linear lead-lag compensation, than it is by a comparable sampled-data model.

The relatively short data samples required for convergence of the

algorithm make it possible to apply stochastic approximation for the study of
adaptive and time-varying human operator behavior.
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2. Applicationof a Modified Fast Fourier Transform to Calculate

HumanOperator Describing Function

Richard S. Shirley

Electronics Research Center

SUMMARY

A version of the fast Fourier transform (FFT) is used in a

hybrid computer program to permit processing of tracking data to

yield the human operator's describing function almost immediately

after the period of data-taking. The use of the FFT allows the

final calculation time required to process 216 seconds of track-

ing data to be reduced to 3 seconds from the 10 minutes previous-

ly required on the same computer. The algorithm used permits the

bulk of the analysis of the data to be performed while the data

are being taken, and does not require all the data to be present

in core before processing begins.

a

A k

Ax k

TABLE OF SYMBOLS

the index of summation for the additive portion of
the FFT

a constant which weights the sinusoids composing the

system input, see Table I

the real part of the truncated Fourier transform of

x(t) at the frequency _k' given by

T

o x(t) cos (_k t) dt

Bxk the imaginary part of the truncated Fourier transform

of x(t) at the frequency _k' given by

T

o x(t) sin (_k t) dt

c

c (nAt)

a subscript referring to the output of the human operator
at the control stick (see Figures 1 and 4)

the data samples taken at the human operator's output
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D k

e

e (nAt)

FFT

Fx(_ k)

an integer devisable by 4 used to determine the input

frequencies

a subscript referring to the input to the human operator
at the oscilloscope (see Figures 1 and 4)

the data samples taken at the human operator input

Fast Fourier Transform

the truncated Fourier transform of x(t) at the frequency

_k' given by

T

_o x(t)e -j_t dt

h

i

i (nAt)

a subscript used to denote frequencies between the input

frequencies, equal to i, 2, 3,...

a subscript referring to the system input (see Figures 1

and 4)

the system input equals

14

_ A k sin (_knAt)
k=l

J

k

m (nAt)

n

N

T

c

Yp(_)

the square root of -i.

a subscript used to denote the input _requencies, equal

to i, 2, 3,...,14

the data samples taken at the system output

the index of summation for the multiplicative portion of

the FFT

the number of data samples taken, 10,800

the period of data-taking, equal to 216 seconds

the dynamics of the controlled element (see Figures 1

and 4)

the linear portion of the quasi-linear describing function

22



Pk _v/_k / -

Yk

At

(Dk/4) -i

the time increment between interrupts, and hence the

time between data samples, equals .02 sec

_k the frequencies of the sinusoids comprising the system.

input, see Table I

_h frequencies between the _k'S

the cross power spectral density between the human

operator's output and the system input

the cross power spectral density between the human

operator's input and the system input

(_)
nn the continuous power spectral density of the human

operator's remnant

INTRODUCT I0N

Only recently have dynamic models of the human operator

been used effectively in the design of man-vehicle systems. This

is due partially to a lack of understanding of the human operator

and also to the difficulty and expense of experimentally deter-

mining values for the various parameters of existing models.

Improvements in computers and computational techniques are over-

coming these difficulties, and already it is possible to bring

about significant improvements in a man-vehicle system through

the use of pilot models in preliminary design (refs. 1 and 2).

This paper describes a computational technique which reduces

greatly the cost of obtaining values permitting the use of a

current pilot model, i.e., the quasi-linear describing function.

One way to characterize the behavior of a human operator

in a continuous tracking task is by a quasi-linear describing

function, which consists of a linear describing function and a

remnant. The linear describing function is the average frequency

response of the human operator, i.e., his amplitude ratio and

phase as a function of frequency. The remnant, characterized by

a continuous power spectral density, is that portion of the human

operator's output which is not linearly correlated with his in-

put. The total output of the human operator is the sum of the

remnant and the output of the linear describing function* (see
Figure i).

*Examples of human operator describing functions are shown in
Figures 2 and 3.
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Figure i.- Block diagram of the human operator in a compensatory
tracking system.
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A direct way to measure describing functions in the labora-

tory involves the use of a hybrid computer and the method of

Fourier coefficients. The method of Fourier coefficients has been

extensively investigated and is described in detail (ref. 3). "It

will be briefly outlined here for completeness. The human opera-

tor is placed in a control loop, possibly as shown in Figures 1

and 4. The system input, a sum of sinusoids of known amplitude,

phase, and frequency is updated every At seconds; simultaneously,
data are taken at the human operator's input and output. At the

end of T seconds, the sampled values of the human operator's in-

put and output are processed as follows:

At N

Ack = _--_ c(nAt) cos (_knAt)
n=l

(i)

At_
Bck = -_--n_Z_lc (nAt) sin (mkn_t)

(2)

At_ e(nAt) cos (_0knAt)
Aek - _ nL_=l

(3)

At N

Bek = _--_ e(nAt) sin (mknAt)
n=l

(4)

Fc(_k) = Ack - JBck (5)

F e(_k) = Aek - JBek (6)

Fc(_ k)
(7)

Yp(mk ) = F e(_k )

-i Bck -I Bek

/Yp(mk ) = -tan Ack- + tan Ae k
(8)
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A + B 2 ]1/2
IY ck ck

' P(mk) I = L AZek + B2]ek (9)

l 12_cc(_h) = _ IFc(_ h) (i0)

_nn(_h ) = _cc(_h ) ll+YpYc(_h ) ]2 (Ii)

where the _k'S are the input frequencies, and the _h'S lie between

the _k'S.

This paper describes how a version of the fast Fourier

transform (FFT) is used to compute human operator describing

functions, or more specifically, how a version of the FFT is used

to solve Eqs. (i) through (4), while the data samples, c(nAt) and

e(nAt), are being taken. The FFT is an algorithm which greatly

reduces the time required to calculate the truncated Fourier

transform, or periodogram, of a sampled time signal. The savings

are obtained by replacing calculations which involve trigonometric

functions or multiplications with simple additions. The replace-

ment is accomplished by taking advantage of the symmetries of the

sine and cosine functions, and by further taking advantage of

relationships between the frequencies at which the Fourier analy-

sis is performed.

THE VERSION OF THE FFT USED

The version of the FFT used takes advantage only of the

symmetries of the sine and cosine functions. It does not take

advantage of the relationships among the frequencies at which

the Fourier analysis is performed. By not using the complete

version of the FFT, it becomes possible to perform the bulk of

the data-processing during the At seconds between interrupts

while the experiment is still in process. The requirement that

the data be in core before processing, or even that the data fit

in core, is avoided. The following derivation of the algorithm

used will make this point clearer. It should be noted that before

the FFT was used it was not possible to perform the calculations

between interrupts because the computation time required was over

two and a half times greater than that which was available.
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It is desired to evaluate Eqs. (i) through (4) using a
digital computer. In order to permit the use of the FFT, the
input frequencies, ek' will be restricted to

where the Dk are chosen from 4, 8, 12, 16, etc. The method of
Fourier coefficients further requires that the ratio N/D k be an

integer (where N is the number of data samples taken at intervals
At). The derivation for AA_. and B__. is identical to the deriva-

tion which follows for Ack and Bck.

Using the identities

sin (@ + 2n) = sin e, and

cos (e + 2_) = cos 8

or

sin (_kAt) = sin [(aD k

cos (_kAt) = cos _aD k + i) _kAt]

a = 0,1,2,3,...

permits Eqs. (i) and (2) to be rewritten as

At _ cF_t(n )
Ack = Tn_= 1 os (_knAt) a=0 _ + aDk

(12)

IIBck = -_-n___1 in (_knAt)a=0_ c[At(n+ aDk)
(13'.

where Bk = (N/D k) -i. The identities

sin (8 - _) = -sin 8, and

cos (0 - _) = cos 0
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or

rco k t<n=cos
permit Eqs. (12) and (13) to be written as

_t_Ack = T os (_knAt) c[At(n+aDk) ]
=0

- c

°= _ [At(n +aDk)]Bck in (_knAt)

n =i a= 0

- c

Finally, the identities sin (-8) = -sin e, cos (-8) = cos e,

sin (_/2) = cos (_) = i, and sin (_) = cos (_/2) 7 0 permit

Eqs. (14) and (15) to be written as

(14)

(15)

At n_ os (_knAt) [At(n+aDk) ] -c t +-2-+aDAck = -9- =i =

- c t -_-n+aD +c At -_-n+-_+aD k

_ h_t _ c t -_+aD
T a=0

-c t _-+ --2-+ aD
(16)
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Bck = -_-- sin (_knAt) _ [At (n + aDk) _ - c t
a=0

+ c t _--n+aD -c t _--n+ -_+ aD k

+ _ a___0 t --4-+aD - c t --4-+_-+aD
(17)

where Yk = (Dk/4) -i. Equations (16) and (17) represent the

algorithm used in the hybrid program. The summation over "a" is

performed between interrupts during the experiment and is called

the "additive portion" of the FFT. At the end of the data-taking

period, the summation over n (called the "multiplicative portion"

of the FFT) and the calculation of the human operator's describing
function [using Eqs. (8) and (9)], can be performed in less than

three seconds.

The hybrid computer program is written in a Fortran IV lan-

guage which includes hybrid commands. The program is listed in

Appendix A. Table I lists the values of the experimental param-

eters, including those which characterize the system input. Fig-

ure 5 is a flow diagram of the additive portion of the FFT.

Figure 6 shows a flow diagram of the hybrid program, and lists the

time taken by each part of the program, both for the FFT version

and for the version written the old way [directly computing Eqs.

(i) through (4)]. As shown in Figure 6, the FFT permits a saving

of nearly ten minutes per run, effectively reducing the run time

to the time required to take the data and print the results.

RESULTS

An initial check of the hybrid program was made by taking

measurements across known filters. The results shown in Figures

7 and 8 are quite accurate, and are repeatable.

Measurements were then taken of the author's tracking per-

formance in a control loop, as shown in Figures 1 and 4. Ten

run_ were made with each of the controlled elements, i/s and

i/s _. The describing functions shown in Figures 2 and 3 are com-
parable with established results (ref. 3).
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TABLE I

PARAMETER VALUES USED FOR THE HYBRID PROGRAM

k
A k

volts

1 .2

2 - .2

3 .2

4 - .2

5 .2

6 -i.

7 i.

_k

rad/sec

26.18

15.71

8.727

6.545

4.363

2.618

1.745

k
A k

volts

8 -lo

9 i.

i0 -i.

ii i.

12 -i.

13 i.

14 -i.

_k

rad/sec

1.309

.8727

.5818

.4363

.2909

.1745

.1164

At = time between interrupts = .02 sec

T 1 = warm-up time before data-taking = 24 sec

T = period of data-taking = 216 sec

14

i(nAt) = system input = _A k sin (_knAt)

No comparison is made between results for the programs with

and without the FFT (on Figures 2, 3, 7, 8) because the results

are identical, as is shown analytically in the derivation of

Eqs. (16) and (17). The comparison between the computation times

for the two programs (Figure 6) however, indicates the substan-

tial savings obtained by using the FFT. The only penalty paid

for the reduced computational time is an increase in the com-

plexity of the written Fortran program, as shown in Appendix A.
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APPENDIX A

PROGRAM LISTING

......iI/I_-76-8.......................8_2_0-_TST ........................... -_-NO_--OO@_
*JOB RSHIRLEY
-DALE l,NOvEH6ER,i966
*TITLE PROGRAM TO MEASURE THE DESCRIBING FUNCTION USING THE FFT
_ASS-I_--11MT_A_=..MT-_fg-._VcT--l_ .................................................................
*ASSIGN 5=CRIA, 6=LPIA

.A_S_M--7-=__I_ .................................................................................................
*FORTRAN S,GO
C
C
C -MAT_ I_ROG-RA-M...............................................................................................
C

....................................... _ .................................................................

C SENSE SWITCH FORMAT

C DO NOT SET SENSE _WITCHES DURING CO_FILATIO_,
C SET=SWITCH IN, LIbHT ON
C--- NOT -S_- T_ SWI_ CH -O1JT-_--E_Ff]' - _ FP ..................................................................
C
C ........ SWITCH NOV- SET .................................... NOT-S_T ............................
C ***************************._********************************************

1 * DO NOT READ DATA CARDS e REAP DATA CARDS AND CALC. INPUT
C 2 * DO NOT CALC. INPUT * CALC. INPUT
C ....... _-_ DO NOT PRCrCE_SS=Ig_kTA................._-PlROC_S_OA@A ............................

C _ * DO NOT USE UNIT 3 TO SAVE DATA *.USE UNIT 3 TO SAVE OATA
C + 5 * DO A DATA OUM_ .................. _-_O-O'AT_-DUf,t_ ...............
C 6 * DO PUNCH OUT DATA * DO NOT PUNCH OUT DATA
C
C

C

c
c
C
C

c
c
c
c
C
C-
C
C FORMA'T STATEMENTS .........................................................................................

I00 FORMATIIHI,3X,IHK,bX,BHFRFO.{K),7X,SHAE{K),IOX,SHBEiK),IOX,
iSHAi(KI,iOX,SH_iiK},i0X,SHAZ(K),IOX,SHU2{K},i/,( IS,TEI5.4'}}

I01 FORMAT(///,4X,IHK,6X,SHFREO.(K) ,7X,8HAREMI(K),7X,8HBREMI (K),TX,
.... 18MAREM_t_Ck_-?X+f814BR_M2_I<#_7_/-,-f_9-,9£-_5-6_T_ .....................................................
102 FORMAT (IE15.8)
103--FORM_cTI-tT_t%-//-f4_-,-_I_X-_F_R_(_I_9-f79(_I_M#4_t_99_A_W#T_ ...................

16HAR2(K),9X,7HPHA2(K),//,(IS,SEISeb,))
.................... .,WGC _.,,, / •, •_..,_._.i04 F.OR_AT (zn_,4X,_n_.,10X,4HF{K} ,_^,_'"_n_,,_.,K},_^,6,' ........ "_'_

2_,))

i,//, ( 15,4E15.4} )
=1-O15- _ T- - ¢_r'l- _"A_"Xif'l- hc'_19 X-f 6H Im%._T'sF#F,9-_"t-1T (--I-_T} _} _ _...... -_..................................
107 FORMAT (/II,IOX,8HPUTSQ = ,IEIS°4+I,IOX,_HERRSQ = ,IEISQ4,10X,

II:,HERRSGiFUTSG - ,IEIS.4,i,IOX,GHGNESG + ,i _'r-_-_.-,,"IOX,I_HO_4ESG/PUT
2SQ = ,IEIS._,/,10X,SHTWOSQ = ,IEIS.4,1OX,14HTWOSQ/PUTSQ = ,IEI_.4)
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...... IlrI_lb-8 ........................ 8U_ _ji_ i_e u@_

108 FORMATI/I/t4XglHKtkXoSHFREQo(K|_$XoTNRIEMI(KII_XoTHREN2(K)oJJo

109 FORMAT (lOXo3110)

_._F_R_-A_|T_t`_H_-_4Xo_51q;j_(_o4ao9_ia|o_9_zXt--_9_4_9-_q)_-o__ ..........

1)

112 FORMAT IIIIo4Xt23HREI4NANT II_MER AT ONE = ,1EtS.4t/t4Xt

IL_HKLRNANI PUWtK AI IWU = tl_£_e4l

.113 FORMAT (///,;X,IHKtbXtSHFREQ,(K),7X_BHREMAI(K)_TX,SHREMA2(K),//,

...... _-[I_;3E_5_-4T|

114 FORMAT (///,IOX,$THE FOLLOWING REMNANT VALUES ARE CORRECTED FOR TH

205)

116 FORMAT (/,_X_SHCONS2 - _1E15o_)

¢

C - D IMENS_ON- STA_ERERTS .........................................................................

COMMON PUT(1080),E(1080),ON£(1080),TWO(1080),KONK,LOP,KANK,

IN,M,lqO_KRIN_PUTS_,_KH._ON_IWO3_

COMMON JA(29),JB(29),JC(29),WSI_300),KL(29),KLE(29)

........ D-II, lENSTON-_(30]¥_£I¢ST;BETIF_YAl-C13]_B-gTTST;X2T_Sl';32Tl_]_ ........................

1AREMl(lfl),BREMl(15),AREM2(15),BREM2(15)

........ Di_SibN- A_i-(i_-i¥A_2¥i_ i_h_/( i_-T; P_i_T;h E-_i_F;_EM2-Fi_i ......................
DIMENSION AM(15)

DIMENSION REMA1(15),REMA2(15)

C
..................................................................................................................
C

C THE PROGRAM CAN BE RECALLED TO THIS POINT BY IFiNITIA AT ANY TIME

.... _-HTTT I _G--[NX _R RU PT- _3- _N_-_Y_ IN_-K-C_R IXGE-RETI_R_ ....................................

CALL IFINITIA

C

....... _9_NE__F-_M-_-_C__S_OL_E............................................................
S EOM 031120

C
..... _OY- _E-A_k_b_- COMPUI_--_T-_-I_--_- .......................................................

CALL IC

C
C SENSE SWITCH_. DETERMINES IF REWIND 3 OR NOT

......... -C#--i s-_N-_--_i i-_-F -V_V_ .....................................................................

..... 99__RE_w_[_N_D__3 ................................................................................................
98 C_T INUE

C
C SENSE SWITCH1 DETERMINES IF FR,-QUENCY AND REGISTER VALUE CARDS ARE

C_ ....... _READ_ ..................................................................................................

IF (SENSE SWITCH1) 23_2_

C ...........................................................

C- ....... S-E_I-SE--_-WI-TCH2--[)-E-T-E-RM-IhI-ES---I-F INPUT CALCULATED

23 IF (SENSE SWITCH2) 1"/,26

C

C READ IN 29 FREQUENCIES IN ORDER, HIG H FREQUENCIES FIRST_

U .......T_-_-I-AN-$-/-_E-Cb_D_--_T_RTi_G-_TT_-K-R_F'4_ANT_REQDERCY -_Fc-D-_ETERITA= ..............

C TING THEREAFTER WITH THE INPUT FREQUENCIES, THE FREQUENCIES MUST

.......XEU-BE--INXEGER._O[TTB_E_-DF--2TPT[-/ROI_TTF4Ei--A-N-D-)H_ NUMU_E-OI _....................

C SECONDS PER CYCLE MUST EQUAL 4IIDELTA)_ WHERE I IS AN INTEGER AND

C DELTA IS THE TIME BETWEEN DAIA POINTS,

.....__ RE__)±Z_O_!__Y_)_tK_t _ )...........................................................
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1111316_ 801_u LIST

WRITE(6,1_I) IKtW(K)tKmlt_)

PAGE NO. 00_OO3

_=^'" '_' TH_ _,_,__':'°"=.............,_v_ rv. THE AbviTIVC P_T OF TM¢ FFT

WRITE(691Z01 (JA(KltJU(_)fJEIK),_=It2_)

INPUT (CALCULATED EVERY DLLT}

CONS1 _CALE5 THE INPUT

CONSl=g,5

REWIND INPUT TAPE PRIOR TO STORING I_PUT

REWIND i

ONW SETS THE STARTING TIME FOR THE INPUT, AND Ib NLuAT|VE

SO THAT THE HUMAN OPERATOR I_ IN A 5TEADY-_TATL TRACKING

CONDITION WHEN THt ONSET OF PATA-TA_INU OLCURb

ONW=-1080.

bELT iS THE TIME INCREMtNT btTNEEN INPUT VALUE_, AN_ MuST eQUAL

DELTA, THE TIMe INCREMENT BETWEEN DATA POINTS,

bELT=,02

THE AM(K) SCALE THE INPUT SINUSOIDS

AM(l)=.2

AM(2)=-°2

AM(3)=,2

AM(4)=-,2

AM(5)=.2

AM(b)=-I,

AM(7)=L.

AMtU)=-I,

AM(9)=I.

AM(ZO)=-I.

AM|II)=I.

AM(12)=-.1.

AM(13)=1°

AM(I_)=-I.

AM(15)=1°

THE INPUT IS CALCULATED IN 6LOCKS oF 540 VALUEb ANO 5lORcO ON

M_GN_TIC TAP_ (UNIT i)°

DU 19 J=l,50

DO i K=I,5_0

PUT(K)=O,

ONW=ONw+I.

T=ONW_DELT

DO 20 L=I,I_

PUT(K)=PUT(K)+AM(L)_SIN(T_W(2_L))

CONTINUE

PUT(K)=CONSIWPUT(K)

CONTINUE

M=I

N=5_0

CALL _UFFEROUT(I,I,PUT(_i)_2_(N-_+I),I_IATUS)

CALL GUTO(ISTATUS)

CONTINUE

CONTINUE

T_E INTERRUPT 15. CUN_ECIEO_ OUT NOT ENABLED

3'/



11113168

CONNECT 140,1NTR)

EOM 020020

POT =00700000

80/80 LIST PAGE NO, OOuO04

b

INITIALIZE FOR THi I RUN

ZERO THE BUFFER ARtAS

"DO 92 K=I,I080

PUT(K)=O.

EIK)=O.

ONLIK)=O.

TWO(K)=O,

92 CONTINUE

ZeRO THe uATA TAPL

REWIND 2

DU 91 K=I,90

N=540

M=I

CALL BUFFEROUTI2,I,L(M),2*(N-M+I),ISTAIuS)

CALL GOTOIISTATUS)

91 CONTINUE

THE MAUNETIC TAPE UNITS ARE INITIALIZED, UNIT I FOR THE IJ_PUT,

AND UNIT 2 FOR THE DATA.

RLWIND l

RLWINO Z

ZLRO THE REUISTERS WHERE THE FOURIER LoLYFILILNIS ARc TU

BI (ALCULATEu,

DO 31 K=1,15

AE(K)=O°

U_(K)=0,

At(K)=0,

oIIK)=0..

AZ(K)=O.

DZ(K)=O,
ARLMI(_)=O°

DREMII_)=O,

AREMZI_)=O,

oREM2(K)=O,

31 CONTINUE

INITIALLIZE FOR TElL ADDITIVE PART oF THE FFT

DO 10 NOW=I,29

KL(NOW)=-I

I0 CONTINUE

DO 14 NOW=I,4300

WSINOW)=O,

14 LUNTINUc

INITIALLIZE THE CuoNTERS FUR THE RUN

KRINK Ib A COUNTER TO DETERMINE THE LOCATION FROM wHICH THE

NEXT INPUT VALUE SH_ULU bE TAKEN FRO_t

KRINK=0

<ONK LCu_T5 THE INTERRUPTS, uLTERMImES wHEN ThE ONSET OF DATA-
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TAKING SHOULD OCCURt AN_ WHEN DATA-TAKINb IS COMPLETED.

KONK=0

KANK I_ TH_ HALF RhGIST_R CUUNTER, 1 TO 540

_ANK=U
MO DhTERMINcb wHICm _ALF MD Tmc INPUT uuFF_R i_ bc|NG US_U

MO=O

B IS A COUNTER UN THE DATA UbED DURING THE DAfA-PROC=SSING

_=-1,

LOP IS THE FLAG SET BY INTR TO END DATA-TAKING

LOP=O

PUTSO AND ERRSQ ARE THE INTEGRAL SQUARE IN#UT Ai, o ERROR

PUTSQ=O.

ERRSQ=O.

ONESQ=O.

TWOSG=O.

XIS_=O.

X2S_=3.

INITIALLIZL INPUT bUFFER FOR ThE RUN, l.c., FILL both HALVES

WITH INPUT VALUES

M=I

N=540

CALL _dFFERI_(1,1,PUT(N},Z*(N-.'.+I},IST_Tu_)

CALL GOTO(ISTATuS)

M=541

N=I080

CALL _UFF_RINII,I,PUTI;4),Z*IN-,'L+i),|ST'_T_a)

CALL GOTO(ISTATuS)

WAIT TO START RuN ON SIGNAL FRom THE uPL_ATuR

PAUSE

511 CONTINUE

S SKS 630O0O

S oRU 513S

GO TO 511

513 CONTINUE

C PuT Tmc A_,ALU_ CGNPUTLR INTu COI.'PuTt ,,_UDL

CALL CDMPUTt

C

C =NAULE THE INTERRUPT

S EOM 031032

C

C

11 CONTINUE

C CHECK TO SEE IF IT IS THE END OF DATA-TAKING

IF (LOP. EQ.I) GO TO 2

C IT IS NOT T_ END OF DATA TAKING, WAIT FOR INTeRRuPT

G_ TO ii

IT IS TmE ctwO Oh DATA TAKINu, _u ON

2 CONTINUE

C TURN OFF THE INTERRUPT

EOM 031033

C PUT TmE ANALOG CCMPUTER INTo TH_ HOLD MCUb
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CALL HOLD

TAKE THE INTEGRAL SQUARE MEASURED

CALL ADLIk,PUTSO,LRRS_,ONLS_,IWObQ,XISU,XZ_U)

PUT THE ANALOG COMPUTER INTO IL MODe

CALL IC

22

SENSE bwITCH3 DETERMINE5 WHETHER TO PRpCESS THE

THE RESULTS, OR WHET_ER TU Rt-INITIALLIZE FOR

IF (SENSE SWITCH3) 17,22

DATA AND

THE NEXT

DATA PROCESSING IS DESIRED, GO ON

CONTINUE

THE FOLLOWING SAVES THE LAST 5_0 DATA POINTS

N=1080

M:541

CALL bUFFEROUT(2,I,E(M),2_(N-M+I),ISTAIUS)

CALL GOTO(ISTATUS)

CALL BUFFEROUT(2,1,ONE(M),2_(N-M+I),ISTATUS)

CALL GOIO(ISTATUS)

CALL BUFFEROUT(2,I,TWO(M),2*(N-M+I),ISIAIU5)

CALL GOTO(ISTATUS)

THE FOLLOWING PERMITS A TOTAL OR PARTIAL TAPE DUMP

IF (SENSE SwITCHS) 89,90

89 REWIND i

RLWIND 2

N=5_0

M=I

CALL BOFFERIN(I,I,PUI(M),2_(N-M+I),ISTATUS)

CALL GOTO(ISTATUS)

N=I080

M=5_I

CALL BUFFERIN(I,I,PUT(M),2_(N-M+I),ISTATUS)

CALL GOTO(ISTATUS)

WRITE(6,106) (J,PUT(J),J=I,1080)

GO PAST THE INITIAL SPURIOUS DATA POINTS (CAUbEU bY

ROUTINE),

M=I

N=540

DO 16 J=l,3

CALL BUFFERIN(2,1,E(M},2_(N-M+I),ISTATUS)

CALL GOTO(ISTATUS)

16 CONTINUE

NO DETERMINES EXTENT OF THE DuMP

NO=3

DC 88 K=I,NO

CALL 3UFFERIN(I,I,PUT(M),2_(N-M+I),ISTATUS)

CALL GOTO(ISIATdS)

CALL 8UFFERINI2,I,E(,4},i_(N-M+I),ISTATUS)

CALL GOTO(ISTATUS)

CALL UUFFERIN(2,1,ON_(MI,2*(N-,i+I),ISTATUSI

CALL GOTO(ISTATUS)

C-LL _UFFERIN(2,1,TWO(M|,2*(N-M+II,I'STATU_)

CALL GOTO(ISTATUS)

L:(K-I)*5_O

PAGE

TYPE

RUN

INTERRUPT

NO, 000006
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WRI TE(b,;O.5) ((_+J) ,PUT I J)._E(J) ,ONE (J) oTWO(J} PJ"1,540}

88 CONTINUE

....... ?0__CO_N_LINU_E_........................................
C
C

C

P_E _, 00@OO7

C
C NULTIPLICATIVE PART OF THE FFT USED TO CALCULATE THE FOURIER
_-........... -_b-E_'-_i-( _-dN_'-_)-..............................................................................
C

DEZ,,3, 1_1._927
' DO 21 K"1,29o2

NE" (K+I) 12
......... L-EBI _-J B-f KT _'-JA-fR-)---I" ..............................................................................

LEEI"Jt_(K)+2_JA(K)-I
......... L-EB2;'-J5( K-__-2t-JA-CKT-1- ..............................................................................

LEE2=JB(K)+3IJA(I_)-I
LENI=LEE1-JA(K)/2
LEM2=LEE2-JA(K)/2

........._.-REMi- (-N-Ei -,,-6-,-..........................................................................................
AREN2 (NE)='0,

........B-RE-Mi-( N-EY'-6-,- ............................................................................................
BREM2 (NE)=O.
JST=(JA(K)/2)-I
DO 27 JI=Z,JST

.........u6_-_-C_)-AYfb-l-i..........................................................................................
VOU=FLOAT (JA(K) )

.........?0[i;0-dO-/q¢0............................................................................................
S II_LK._=S/LN (DEZ_TOU)
COSU$ = SQRTI I • -S INUS'I_I2. I
ARENI (NE) =ARE]Irr'1--t:_t£_+ (WS (LEBI+J I )+WS( LEE 1-JI ) )_I N_

.........T_-RE-M2-_N-E_-_A_EM2-(-__-_FW_TCE-B_3_-V*--_i-CE_-_-Oi-_3-_-_N-O_-.................................
BREM I (NE )_=BREM I(NE-)÷$trr.JC4=_T=,8_J1r1-_-W,_-Xt EE 1-J I ))_',COSUS

.........B-RE-M2-fN-E1-_B-R_]4_i-@E-F+-__ i-C-EB2¥_-/i--@_-_-CEE_--3i-_T_ EO _-__-..................................
27 CONTINUE

AREMI (NE )=AREMIINE ),_S| LEM1)
AREM2(NE)=AREM2(NE )+WS(LEM2)

.........B-RE'_I-fNE )-;BRE'MIT_iE_;-_{-L'EE'I]................................................................

BREM2 (NE )-BREM2 1NE )-WSl I,.EE-2)
.....2I--TON-TII_0E..............................................................................................

C
C CALCULATE THE FOURIER COEFFICIENTS FOR TIdE DESCRIBING FUNCIIQN

DO 28 K=2_28_2

LEBE=JB(K)-I
.........t-__-__,-_B-_k-}-;-J_-f_,-}---_-..........................................................................

LEBI=JBIK)+JA('K)-I

LEE_-JB(K)+2*JA(K)-I
LEB2=JB(K)+2*JAIK) .-1

........L-EE2_ _E __i-3 A-f K-_=_ ..............................................................................
LENE=LEEE-JA(K)/2

........_-_-C_i_3_i_1 / 2
LEMZ=LEE2-JA(K|/2
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AIINE)-O.
BIINE)'0.

A2INE)'0,

BZ(NE)'0.

JST'(JA|K)/2)-I

DO 29 JI-lmJST

UOUsFLOAT(JI)

VOU=FLOAT(JA(K))

TOU-UOU/VOU ......................................

........ _iN-0_;_i_6b_ZW_0T ............

AE(NE).AE(NE)+(WS(LEB_JI)+WS(LEEE-JI})_SINUS

AI(NE)=AI(NE)+(WSILEBI+JI)+WSILEE1-JI))mSINU-5

A2(NE).A2(NE)+(WS(LEB2+JII+WSILEE2-JI)I_$INU5

BE(NEI=BE(NE)+(WS(LEBE+JI)-WSILEEE-JI))eCOSUS

B2INE)=B2INE)+IWS(LEB2+JII-WSILEE2-JIIIeCOSU$

...._-_O_TYNUE .......................................................................................
AE(NE)=AE(NE)+WSILEME)

AI(NE)-AI(NEI+WS(LEM1)

A2(NE)=A2(NE)+WS(LEM2) .............................................................................

........B-EYNE_Z6N_I_W_EEE_-
BI(NE)=BI(NE)-WS(LEEII

...... B2_Z_;BZ(N-Ei:W_i_EE2Y ...............................................................................

28 CONTINUE

C

C

.......CAL-C b_ XT E -_ E--HU MXN- -O_E R_ TO R-S-D E-S-CRI_ INC -FU_CTTO R-Al_I_ITEMNA-NI'- ....................

C ....................................................................

...........b-o--_---K;Y;i_........................
DENOM-AE(K)_AEIK)+BE(K}*BE(K)

ARI([)=SQRT(IAI(K)*AI(KI+BI(K)*BI(K))/DENOM)

AR2(K)-5QRT({A2(K)*A2(K)+B2(K)eB2(K))/DEN ON)

........._E(E_ 7_.-_ATAN2_B_-6[_ E6Ei_:A_NZ_ L_¢_ ..............................
PHA2(K)=57,3_(ATAN_(B2(K)_2.(K)J_-ATAN2(BE(K)_AE(K)))

-_.......O_-_-A_M_TY6N- _-_HA-T'_/-_-_0_x_-_k_£-_E-A_-_-_-_-_--IR_ ............................
C 180 DEGRESS TO CORRECT FOR THE LOSS OF PHASE INFORNATION

C IN THE ARC-TANGENT ROUTINES

IF (PHAl(K),LT.180,I GO TO 93

.........._£ _A_-(K |_3_6¥.........................................................................
93 IF (PHA2(K).LT.180*) GO TO 9_

.......... p_A-2_)_|[_:-_&_ ............................................................................

9_ CONTINUE

DELT=,02_ T-216

CONS2"1,&7_-7
DO 33 K=lml5
REMI(K)-CONS2_(AREMI(K)eAREMI(K)+BREMI(K)eBREMI(K))

......... REH21_3_ {0 N-_2_ iX R£1_r2-i_ i_AR-E f(21_ }_BR ER 2TRT_B-REIq2-T K-)-}

33 CONTINUE

DO 230 K-1_14

REMAI(KI=REMI(K)+(RENI(K+Z)-REMI(K))_(W(Z_K)-W(Z eK-1)I/Iwt2eK+I)-

lW(2_K-1))
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REMA2(K)-REM2{K)+(REM2(K+I)-REM2|K))_IWI2_K)-W{2_K-1))/IW(2_K÷I)-

......_(2-.K-Z-I-))

2__0

231

CONTINUE

CALCULATE THE REMNANT-_WER ..............................................................

R_MPWI=O.

REMPW-2=Oe .................................................................................

DO 231 K=1,14

_EMPWI=REMPWI+REMAI(K}*(W(2*K-I)-W(Z*K+I))

REMPW2=REMPW2+REMA2(K)*(W(2*K-1)-W(2*K+I))

CONTINUE .....................................................................

WRITE OUT THE FOURIER COEFFICIENTS OF THE SYSTEM ERROR (E), THE

HUMANS OUTPUT (ONE)t AND OF THE SYSTEM OUTPUT (lWO).

WRITE(6tIO0) (K,W(2*K)gAE(K),BEiK)tAI(K)tBI(K),A2(K)PB2(K),K=I,14)
..........................................

WRITE OUT THE FOURIER COEFFICIENTS OF THE REMNANT AT THE HUMANS

OUTPUT (ONE), AND AT THE SYSTEM OUTPUT (TWO).

WRITE{61101) (K.W(2_K-1)tAREMI(K)_BREMI(K)tAREM2(K)IBREM2(K).K=I.I

15)

WRITE OUT THE HUMAN OPERATORS DESCRIBING FUNCTION AND 'REMNANT A_ .....

WELL AS THE SYSTEM OPEN LOOP DESCRIBING FUNCTION AND REMNANT

WRITE(6tl08) (K,W(2_K-1)tREMl(K)_REM2(K)_K=l.15) -

WRITE(6.116) CONS2

WRITE (6.113) (K,W(2*K),REMAI(K),REMA2(KItK=I,14)

239

WRITE(6,103) (K,W(2*K),ARI(K),PHAI(K),AR2(K),PHA2(K)tK=1914)

DO 239 K=1o14

REMAI(K)=REMAI(K)*((lo+AR2(K))*i2.)

REMA2(KF=REMA2(K)_(-(I.÷AR2(K))*_2°)*(ARI(K)**2.)/(AR_(K)*I2.)

CONTINUE

WRITE(6,114)

WRITE{6,113) (K,W(2*K)_REMAI{K).REMA2{K).K'I.I_)

WRITE(G.116) CONS2 _

WRITE OUT THE ERROR SCORES

ERRSY=ERRSQ/PUTSQ ........

ONESY=ONESQ/PUTSQ

TWOSY=TWOSQIPUTSQ ............

WRITE(6,107) (PUTSQ,ERRSQ,ERRSY,ONESQ,ONESY,TWOSQ,TWOSY)

WRITE(6,117) XISQ,X_SQ " -

PUTSQ=PUTSQI216o

ERRSQ_ERRSQ/_16_

240

ONESQ=ONESQI216.

TWOSQ=TWOSQI216.

WRITE(6,107) (PUTSQ,ERRSQ,ERRSY,ONESQ,ONESY,TWOSQ,TWOSY)

WRITE OUT THE REMNANT POWER .................................................

WRITE{6,112) (REMPWI,REMPW2)

REMPWI=O°

REMPW2=O.

DO 240 K=I,I# ...........................

REMPWI'REMPWI+REMAI(K)_IW(21K-I)-W(2_K+I))

REMPW2.REMPW2+REMA2(K)_(W(-2_K_I_W('2_K_I)) ....................

CONTINUE

WRITE(6_112} (REMPWi,REMPw2)

SENSE SWITCH 6 DETERMINES WHETHER TO PUNCH OUT THE ANSWERS ON CARDS
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IF {SENSE SWITCH6} 35.36

PUNCH OUT THE DATA ON CARDS, 14 CARDS WITH ARI,PHAltAR2,PHA2,

REMAI, AND REMA2, PLUS i CARD WITH-PUTS_tERRSQ,OI_ESQtTwUSQ,

REMPwl, AND REMPW2.

35 WRITE(7,115) (ARI(K)tP_AI(K)tAR2(K),PHA-2(K)tREMAI(K)tREMA2(K),K=I,
114)

WRITE(?t115) (PUTSQ,ERRSG,OJ_ESQtTWOSQtREMPWI,REMPW2)
36 CONTINUE

97

521

96

95

THE FOLLOWING STORES EITHER ONE(M) OR TWO(M) ON UNIT 3 FOR

LATER PROCESSING FOR THE REMNANT

SENSE SWITCH4 DETERMINES WHETHER TO SAVE ONE(M) OR TWO(M)

IF (SENSE SWITCH4) 95,97

R_WIND 2

REWIND 1

M=I

N:540

THE FOLLOWING AVOIDS THE SPURIOUS DATA POINTS

DO 521 K:1,3

CALL BUFFERIN(2tI,TWO(M),Z*(N-M+I),ISTATUS)

CALL GOTO(ISTAIUS)

CONTINUE

CALL _UFFERIN(1,1,PUT(M),2*(N-M+I),ISTATUS)

CALL GOTO(ISTATUS)

CALL 8UFFERIN(I,ItPUI(M),2*(N-M+I}tISTATUS)

CALL GOTO(IbTATUS)

DO 96 K=I,20

_UFFERINII,I,PUT(M),Z*(N-.vI+I),ISTATUS)

,E(M)_2*(N-M+I),ISTATUS)

,ONE(M),2*(,N-M+I)tISTATUS)

,TWO(M),2*(N-._+I),ISTATUS)

,PUT(M)t2*(N-M+I),ISTATuS)

,E(_),2*(_-M+IItISTAIUS)

,ONE(M}t2*(N-M+I),ISTATUS)

,TWO(M),2*(N-M+I),ISTATbS)

C_LL

CALL GOTO(ISTATuS

CALL BUFFERIN(2,'I

CALL GOTO(ISTATUS

CALL BUFFERIN(2,1

CALL GOTO(ISTATUS

CALL BUFFZRIN(2,1

CALL GOTO(ISTATUS

CALL BUFFEROUT(3,1

CALL GGTO(ISTATUS

CALL BUFFEROUT(3,1

CALL GGTOIISTATUS

CALL BUFFEROUT{3,1

CALL GOTO(ISTATUS

CALL BUFFEROUT(3,1

CALL GOTO(ISTATUS

CONTINUE

CONTINUE

20O

RETURN TO

GO TO 17

STOP

INITIALLIZE FOR THE NEXT RUN

INTERRUPT SWBROUTINE (INTERNAL)

INTR SERVICES THE INTERRUPT

SUBROUTINE INTR

OOOOlO
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2

12

1

801B_ LIS3

KRINK IS THE RE61STER COUNTER, 1 TO 1080

KRINK=KRINK+I

KONK Ib THE TOTAL COUNTLR_ I 0iI UP

KONK=KONK+I

KANK IS THE HALF R_GISTER CuUNTLR, I TO bOO

KANK=KANK+I

IF (KONK.GT. I080) GO TO i

IF (KANK.GE.541) 60 TO 3

CALL DAL(O,PUT(KRINK))

RiTURN

_F (KONK.GT.11880) GO TO 5

IF (_A_K._E.541} GO TO 6
CA'LL DAL(O,PUT(KRINK))

CALL ADL(O,E(KRINK),ONE(KRINK),TwO(_RINK))

ADOITIV6 PART uF THe FA_T FvURI_R TRAmoFURM

KL = A COUNTLR_ 0 TO {2*JA(_)*JC(k)-I)

JA=HALF THE NU_IdER OF CYCLE_ PER SECg_ID/OIVISOR

J_=RLGISTER START FOR _CH FREQUENCY

JC=DIVISOR 'JSED ON hALF THE Nu_,BER OF SAMPLES

ADoITIVE PART OF THE FFT

ADO T_c DATA INTO THEWS(RI

_6 27 K=1,29

23 KL(K)=KL(<}+I

JNK=JA(K)*JL(K}

IF (KL(K).G_.J_IK) b_ TU 3Z

KLEIK)=KL{K)IJ_{_) + Jm{K)

G_ TO 24

_2 J_K=Z*JA(Ki*JC(_)

IF(KL(K).GE.JAK) GO TO 33

KLE(K)=(KL(K)/JC(K))-JA(K)+J_(_)

GO TD 25

33 _LIK)=-I

G_ TO Z3

2_ J#=KLL(K)

Jc=KLE(K)+JA(K}

JF=KLL(K)+2*JA(K)

_S(JD)=wS(JD)÷EI_R|I_K)

_S{_L}=_SIJL)+O_,C{KRIr_K}

aS(JF)=wS(JF)+TWd(KRINK)

GD TD 26

25 JD:KLEIK)

JE=KLEIKI+JAIK)

J?=KLEIK)+2*JA(K)

WSIJDI=_S(JD)-Z(KRINK)

_$(JEI=WS(JEI-ONE(KRINK}

_S(JF}=wS(JF)-T_OIKRINK)

20 CuNTINUE

27 LONTINUE

RETURh

3 _AN_:I

IF (MO.GE.I) GO TU 7

MO:i

N=540

_=I

PER CYCLE

PAGE

TO GET JA

NO. OOUOll
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11/13/68 80180 LIST .... PAGE N-O_O000_2

9 CALL BUFFERIN(I_I,PUT(M),2*(N-M+I),ISTATU5)

GOTO 4

MO=O

N=iO8O
M=541

KRINK=I

GO TO 9

....6 KANK=I

IF (MO.GE.I) GO TO 10

MO=I

N=540

M=I

11 CALL _BUFFER IN_( i _i _ PuT(M). _2*JN_Mt.I] ,.I..S_ AT US! _

_LOAD

WDATA

39.269908

26.179938

19•634954

15•707963

13.089969

8,7266460

7.8539816

6,5449847

5.2359877

4•3633230

3.1415927

2.6179959

2.1816615

1,7453292

I•57Q7963

I•3089970

i•0471975

•87266462

•72722052

CALL BUFFEROUT(2,I,EIM)_2_(N-M+I)PISTATUS)

CALL BUFFEROUT(2,1,ONE(M),2_(N-M+I},ISTATUS)

CALL BUFFEROUTI2pI_TWO(M)_2_(N-M+I},ISTATU5)

GO TO 8

I0 MO=O

N=IO80

M=541

KRINK=I

GO TO II

5 LOP=I

GO TO I2

SUBROUTINE GOTO (ISTATUS)

SUBROUTINE (INTERNAL) TO HANDLE TAPE READ AND WRITES

7 GO TO (6,4,5,5,5)(STATUS

6 GO TO 7

5 WRITE II02,200)ISTATU5

4 RETURN

200 FORMAT ($BUFFERIN STATUS WORD =$t12)

END

X

• 58177642

,52359877

46



II/13/68 80/80 LIST PAGE NOe 000015
_4_633231
,34906585
,29088821

°17453292
°14544410
,11635528
.08726646

4 1 1
............................ _,-........... -f_- ........... --I

8 31 I
..........................i-_........... -_- .............. i .......................

12 8.5 1
"18 12! 1
20 175 1

............................ 2-_....... _:_- ......... l...............................................
30 307 Z

50 505 1
60 655 1
72 835 I

...........................90-........._b_Y.............K .......................................................
50 1321 2

............................5_........._&-Sr............._ .........................................................
60 1471 2
60 1801 3
54 1981 4

............................ _ ........ _ ............. _ .......................................................
50 2305 6

.........................."-6--6........_-5_ ............"&........................................................
50 2635 9
60 2785 9
60 2965 10

.........................._ ......._f_ ........i_ .....................................................
9O 51_5

...._ ..........................................................................§_........_---
90 4,009 20
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3. NonlinearTime-Domain Models of HumanControllers

Lawrence W. Taylor, Jr.

NASA Flight Research Center

Edwards, California

INTRODUCTION

Analysis of the stability and performance of control systems in which a
human controller is an active element has been hampered by the lack of an
adequate mathematical model of the human control function. The recognized
pioneer in the problem of determining models of human controllers was
Tustin (ref. 1), who, in 1947, reported on compensatory tracking experiments
and used the data from these experiments to formulate a model of a human
controller. Many investigators since Tustin have analyzed data from similar
experiments to formulate human control-response models. Because the
human controller or pilot flying an airplane adapts or changes his technique
as the dynamics of the plant or airplane changes, many experiments are
necessary. In the compensatory tracking experiment (see fig. 1) the pilot
is asked to minimize the error, e, displayed to him by an oscilloscope,
television screen, or meter by manipulating a controller. The controller
deflection, c, is sent to an analog computer which computes the response
of the controlled element and adds to it the input disturbance function, i,
forming an error which, in turn, is sent to the display. The signals are
either processed during the experiment or recordings are made of the
signals and later processed to obtain the model of the pilot (ref. 2). Similar
experiments have been performed in flight in which the pilot maneuvers the
airplane (refs. 3 and 4).

Data resulting from such experiments have been analyzed, and linear
pilot models have been obtained (refs. 2 to 4) for a limited set of controlled-
element dynamics. The methods used to construct the pilot models have
been almost exclusively in the frequency domain (ref. 2). Recently, the
time-domain analysis (ref. 5) has been applied to the problem of modeling
pilots. Almost all the analysis of human control response that has been
performed, however, has been in terms of linear models because human
control response is often almost linear and the linear analysis is simpler.
Figure 2 shows a block diagram of such a model. The part of the human
controller's response that deviates from a linear, constant-coefficient model
is represented by a noise signal, r, added to the output of the linear model
in the manner shown.

Most of the small amount of nonlinear analysis that has been performed
has been ad hoc in the sense that specific nonlinearities have been assumed
and their characteristics determined by manual adjustment (ref. 6) or by
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least squares (ref. 7). The time-domain analysis of Balakrishnan (ref. 8)
offers a means by which nonlinear systems can be analyzed and modeled
without having to assume specific nonlinearities. The only assumptions
necessary are those that pertain to a Volterra integral series expansion.
This generality is particularly important when little is known about the system
being modeled, as with human controllers.

The initial results of the nonlinear time-domain analysis were reported
in reference 5. Since that time, additional analyses have been made. This
paper presents some of the results of these subsequent analyses and discusses
the method of selecting the maximum memory time and the order of the non-
linear model. In addition, some results of orthogonal expansion of the
weighting functions for reasons of data compression and reduction computation
are presented and discussed.

LINEAR TIME-DOMAIN METHOD

Let us now consider a linear analysis in the time domain in which the

output of a linear pilot model is expressed in the form (see ref. 8)

c(t) =fTMh(_)e(t- T)dr + r(t)
O

Because the time histories c(t) and e(t) must be sampled for analysis, it
is more appropriate to write

M

c(n) = _' hp(m)e(n -
m=l

m + i) + r(n)

or in matrix form

where

e=Eh +r
•--p --

E

e(M)e(M - 1)... e(3)e(2)e(1)
e(4)e(3)e(2)

e(4)e(3)
e(4)

e(N - 1) e(N "M)

e(N) e(N - 1) .... e(N - M + 1)
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hp(1)_

c(M) 1(M +C _ °

\c(N)

/

r =

The sampled impulse response of the pilot model,
using the least-squares formulation

_ = [ETE] -IETe
-p

/r(M) 1

r(M +

\r(N)

hp(m), can be obtained by

Inherent in the time-domain representation of the pilot model is the
assumption that the output at any one time is a function of only a finite time
of the history of the error. This maximum memory is denoted by M in
the expression of the pilot model output. Figure 3 shows a typical result of
such an analysis. It can be seen that the model impulse response first peaks
at about 0.3 second, then oscillates as it subsides to zero. The oscillation
indicated in the pilotts impulse response function is typical and is thought to
be due to the dynamics of the combination of the control stick and the pilot's
arm.

The time-domain results can be transformed to the frequency domain for
comparison with the frequency-domain results through the use of the Fourier
transform so that

Yp (jw) = F T

Figure 4 shows such a comparison in terms of amplitude ratio and phase angle.
Although there is fair agreement between the time-domain and frequency-
domain results, considerably less variance is evident in the time-domain
results, as is indicated by the smaller range of values determined from three
independent sets of data. The variance in the frequency-domain results is
particularly severe at the lower frequencies where the error, which is the
input to the pilot, is kept very small. For frequency-domain analysis, an
inputdisturbance must be used which is "large" compared with the remnant or
noise of the pilot. Ifthisis not true, the measured pilotmodel becomes the
inverse of the transfer function of the plant or airplane. This does not apply
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in the time-domain analysis, however, because only causal or realizable models

result from the requirement that the model response follow the input. Wingrove

and Edwards (ref. 9) of the Ames Research Center have in fact analyzed, using
the time-domain method, flight data for which no disturbance input was present
except that due to the pilot's remnant. If such a procedure proves to be

generally applicable, special tracking experiments will not always be required

and it will be possible to use data heretofore unanalyzed to determine pilot
models by means of the time-domain method of analysis. Still another

advantage of analysis in the time domain is the capability of constructing non-
linear pilot models.

NONLINEAR TIME-DOMAIN METHOD

Nonlinear behavior on the part of the pilot accounts for at least part of
the remnant of a linear pilot model. It is, therefore, of interest to investi-
gate nonlinear pilot models. The formulation of a nonlinear time-domain

pilot model can be expressed by using a Volterra integral series:

T M

e(t) = _o hpl(T)e(t - _)dr

(linear)

T T
M M

+fofo hp2 @l'T2)e(t-ll)e(t-

(quadratic)

T T T_
M M_ivt

+soSoSo-

"r2)d'rldT 2

hp3(T 1,V2,T3)e(t - T 1)e(t - _2)e(t - T3)drldr2dr 3

(cubic)

+ r(t)

or in the discrete case

M

Z hl(m)e(n - m + I)e(n)

m=l

(linear)

+

M M

m_l _ h2(ml'm2)e(n- ml
=1 m2=1

(quadratic)

+ 1)e(n-m 2 + 1)
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M M M

+ m_l=l m2=l_ m3=l_ h3(ml'm2'ms)e(n- ml + l)e(n-m 2 + l)e(n-m S + I)

(cubic)

+ ............. + r(n)
(higher order)

As for the linear example, these expressions can be easily put in terms of
matrices.

If again

 c(M)1 1c (c(M+ 1 r(M +

\c('N) r(N)

but h is expanded to include the elements of the higher order weighting
functions so that

lhl(I)

hl(2)

h _

hl(M)

h2(l,I)

h2(l,2)

h2(l,M 2)

h2(2,2)

h2 (M 2 , M 2)

h3(1, 1, 1)

h3(1 , 1,2)

h3(1, I, MS)

h3(1, 2, 2)

h3(M 3 , M 3, M 3)
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andif E is expandedin a similar way so that

E

e(M1). • e(1)e(M2)2.. •

e(M 1+ I).. • e(2)

e(M 1 + 2)

e(N) . . . e(N- M 1

(e(M2)e(1))... e(1}2e(M3)3 ....... e(1) 3-

• • • •

• • ° •

• • • °

• . • •

• • • °

+ 1}e(N) 2 ..... e(N- M 2 + 1) 2 . . e(N- M 3 + 1) 3
m

we can again write

A
c=Eh +r

and

_ = IEIE l-lEl_c

It is difficult to present the results of such an analysis in a meaningful
form, but it is instructive to look at an example step response• Figure 5
shows (1) the response of the linear portion of the model and (2) the total

response of the nonlinear model• A step input was used with an amplitude
equal to twice the root-mean-square of the error or input to the pilot• The
responses have been normalized for comparison• As the amplitude of the

input is reduced, the response will approach that shown for only the linear
portion. The only significant difference is the greater overshoot for larger
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innuts and a slight increase in gain (evidenced by the larger steady-state
rdsponse) of th_ larger input.

SELECTION OF MEMORY TIME AND ORDER

One method of assessing the worth of a model is to consider the fit error
or the mean square of the difference between the measured and the calculated
response. In figure 6 the fit error, which has been normalized by dividing
by the near square of the total response, is plotted against both the maximum
memory time on the left and the order of the nonlinearity of the model on the
right. It is apparent that the fit error continues to decrease as either the
memory time or the order is increased. It is of course not surprising that
the fit error is reduced, since both increased memory time and increased
order result in more degrees of freedom for the model. If as many elements
in the model are allowed as there are data points, the fit error would be zero.

Another consideration is the variance or lack of certainty with which the

weighting function elements can be determined. In figure 7 a lower bound of
the average variance of the weighting elements is plotted against the same
quantities, the maximum memory time and the order of the model. The
estimates of the variance are based on the Cramer-Rao inequality in the same
manner as was done by Astrom in reference 10. The values have been
arbitrarily normalized. It is evident that the uncertainty of the weighting
function increases as the memory time or order increases. Consequently,
the selection of memory time and order should consider both the fit error
and the variance.

Since we will use a model to predict the pilot's response for an unknown
input, let us next consider the fit error, not for the same data used to deter-
mine the model but for an independent or "new" set of data. Figure 8 shows
that the fit error now increases with increased order. On the basis of this
information, one would conclude that a linear model with a maximum memory
exceeding 5 seconds should be used. This result should serve as a warning
against believing that a reduction of the fit error over the same data to define
the model is necessarily an improvement.

The large difference in the fit error that results from using the same
and new data indicates that either more data or a longer run length is needed.
An example of the effect of run length on the difference of the fit error is
presented in figure 9. It can be shown that the expected value of the fit error
for an infinite amount of data is approximately the average of the values for
the same and new data. The run length of 1 minute that was used in figures 6,
7, and 8 is inadequate to accurately determine the expected value of the fit
error. Consequently, the run length was increased to 4 minutes. Figure 10
shows the final fit-error results. There is no discernible decrease in fit
error for values of memory time in excess of about 3.25 seconds for a linear
model. The reduction in fit error that results from using a third-order non-
linear model as compared to a linear model is 4 percent out of 36 percent.
It is not expected that this reduction would warrant _he added complexity of a
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AVERAGE VARIANCE OF WEIGHTING TERMS AS A

FUNCTION OF MEMORY TIME AND ORDER
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EFFECT OF RUN LENGTH ON FIT ERROR
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nonlinear model in most applications. Although it cannot be said with certainty
that appreciable further reductions in the fit error cannot be made by using even
higher-order nonlinear models, the indication is that higher order models are
not warranted. This would indicate the bulk of the remnant to be stochastic

rather than deterministic, a result consistent with results reported in reference 5.

DATA COMPRESSION

One problem that faces the analyst in a comprehensive study is the difficulty of
summarizing the results of perhaps a hundred cases each having as many as
55 weighting elements. One approach to the problem for linear models has
been to use 10 terms of a LeGuerre polynomial expansion (refs. 11 and 12).
This represents a reduction from about 20 quantities (gain and phase) needed
for characterization in the frequency domain to 10 coefficients for the LeGuerre
polynomial representation of the impulse response function. One wonders,
however, if there are not better functions to be used, especially for nonlinear
models. A method suggested by Dr. A. ¥. Balakrishnan, of the University
of California at Los Angeles, and motivated by the spectral representation of
the information matrix appears to answer this question. A large, representative
collection of weighting functions is used to form a summation of outer products

N

s hih:
i=l

The Eigen values and the corresponding Eigen functions of the matrix are then

determined. The Eigen vectors which correspond to the principal Eigen values
can then be used as functions for expanding the weighting functions. This
method was applied to a collection of linear weighting functions with satis-
factory results. Only 3 or 4 of the Eigen vectors were necessary to characterize
38 weighting functions, each with 13 elements. The principal Eigen vector is
plotted in figure 11 and appears to be a typical impulse response, as would be
expected. Only 3 or 4 values are now needed to characterize the model which
in the frequency domain required 20. The potential savings in data and in
reduced computation for nonlinear models is even greater since the modeling
problem reduces to determining a few to several coefficients as opposed to
determining a much larger number of weighting elements.

CONCLUDING R EMARKS

Analysis in the time domain is more advantageous than analysis in the frequency
domain because (1) fewer values are needed for a characterization (this is
especially true if the proposed method expansion for the weighting function is
used) and (2) greater accuracy is achieved, especially when the input disturb-

ance is not large compared with the remnant.
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The fit error over the data used to determine the model decreases with

increased memory time and order of nonlinearity. This result can be mis-
leading, however, as the average variance of the weighting terms increases.
The fit error over new or independent data should be used to assess which
memory time and what order of nonlinearity should be used.

Eigen vectors that correspond to the principal Eigen values of a summation
matrix of the outer products of a large, representative sample of weighting
functions have proved to provide an efficient orthogonal expansion. The
determination of the coefficients of these functions, as opposed to that of a
much larger number of weighting-function elements, promises to offer not
only a means of summarizing large sets of results but also of reducing the
computation necessary.

Although the results from applying nonlinear time-domain analysis to the
problem of modeling the human controller have been useful, any advantage of
a nonlinear model over a linear model or the human controller performing a

compensatory tracking task appears to be small. This result would not have
been known, however, if nonlinear models of the human controller had not
been made.
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SYMBOLS

C

E

e

F[I

h

h.
1

h
P

i

pilot output (control deflection), inches

error matrix

error, radians

Fourier transform

time interval, seconds

sample of impulse response of pilot

impulse response of pilot, inches/radian or inches/degree

input (external disturbance function), radians

M

m

N

n

o

r

S

S

TM

t

Y
C

Yc(J_)

Y(ja_)

T

A-r

T M
maximum value of m, M - Av

index for the argument of h
P

maximum value of n

index for time

linear output of pilot model (control deflection), inches

remnant signal of pilot model (control deflection), inches

matrix

Laplace variable

maximum memory time of the pilot model, seconds

time, seconds

transfer function of controlled element

controlled-element transfer function, radians/inch

pilot describing function, inches/radian

argument of hp, seconds

incremental value of T, seconds

frequency, radians/second
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A estimate

I I ,-,h_,,-,l'n_-,_, ,_r_111p,

L_ phase angle

Matrix notation:

(x), x column matrix

[X] rectangular or square matrix

X T transpose

X -1 inverse

Numbers used as subscripts denote the pertinent term or terms of the
Volterra integral series or summation.
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4. Some Examples of Pilot/Vehicle DynamicsIdentified
from Fiight Test Records

Rodney C. Wingrove, Frederick G. Edwards,

and Armando E. Lopez *

ABSTRACT

Mathematical functions describing the combined pilot/vehicle dynamics

have been used extensively in previous studies (ref. i) to analyze manned

control systems. In these studies, the describing functions have been

measured in simulated tracking tasks using carefully controlled forcing

functions to excite the pilot/vehicle dynamics. During routine flight tests,

however_ there are no carefully controlled forcing functions. Therefore, if

describing functions are to be obtained from this type of flight test record,

an alternate identification technique is required. Such a technique that

allows identification from routine operating records was presented in reference

2 for the identification of the pilot describing function. This paper briefly

outlines the application of this technique to the identification of the com-

bined pilot/vehicle describing function_ and presents some preliminary results

calculated from selected flight test records.

Figure 1 presents a block diagram of a closed-loop task in which the

pilot controls his output so the attitude error is kept near zero. The sig-

nals analyzed to obtain the pilot/vehicle describing function are the attitude

error e and the attitude rate r. The pilot/vehicle dynamics, between the

signals e and r, are mathematically modeled by the linear element

YpY_(jw). The technique for identifying YpY_(jw) is illustrated in the

block diagram of figure 2.

In the identification processing, the signal e is time-shifted with

respect to r by k, where k is equivalent to the effective time delay in

YpYv(j_). The importance of this time shift is illustrated in figure 2

wherein describing functions_ computed using a time shift of zero and a time

*Research Scientists, NASA-Ames Research Center, Moffett Field, California.
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shift r_f 0.7 se_7, are presented These describing ........... • ._n_ _ L_Jno were obtained

from flight records of the Gemini X retrofire maneuver•

During the retrofire maneuver, the only excitation comes from the inter-

_ nolse source n _.c , pilot _11÷_i_+ _

With k = O, it is well known that because the excitation is internal, the
/k

estimated describing function YpYv(j_) will not measure YpYv(jw), but

rather, as shown, it will measure the negative inverse of the alternate path,
/k

i.e., YpYv(j_) = -j_. Using a time shift k, however, the theory in

reference 3 shows that, under certain reasonable conditions, the estimate

YpYv(j_) will identify the desired function YpYv(j_). For this example, it
/k

was found that the estimate of YpYv(j_) is relatively insensitive to the

exact value used for k. YpYv(jW) was essentially the same for values of k

ranging from 0.4 sec to 1.O sec. The estimate of YpYv(j_), shown in figure

2, was computed using k = 0.7 sec. This describing function is compared in

the following section with other measurements of these dynamics.

From the estimate YpYv(jW) (for k = 0.7 see), the describing function

of the total system is determined as YpYc(jw) = YpYv(jw)/j_. This estimate
/k

of YpYc(jw) is compared in figure 3 with two other measurements of Y_Yc(jw)

computed from the Gemini retrofire records. One measurement assumes a cross-

over model Ke -$jw for YpYc(jw) and uses a two-parameter search technique

j_
to identify the values K and _. Figure 3 shows that the estimate

/k

YpYc(j_) is in very good agreement with the measured crossover model

-.715j_
1.31e . The other approach uses the technique of reference 2 to

j_ A

measure the describing function, Yp(jw), of the pilot and the describing
^

function, Yc (jw), of the controlled element. These two individual measure-

ments Yp(ju0) and Yo(j_) are multiplied together to obtain the estimate

denoted Yp(j_) Yc(jw). Figure 3 shows that the magnitude determined from

the individual estimates Yp(jw) Yc(j_), is only slightly below the estimate
/k
YpYc(j_). This difference is probably because the pilot and the controlled

system are each non-linear. The phase angles determined by these three

techniques however are almost identical.

The estimate Ypyc(j_) for the Gemini X retrofire data is next compared

with describing functions measured from flight records of the Gemini X and
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X-15 reentries. These selected examples_ as presented in figure 4, represent

various forms in the controlled element Y_(jw). For the Gemini retrofire,
^

the estimated controlled element Yc(j_) is approximately a rate command

approximately an acceleration command system. For the X-15 reentry, the

estimated controlled element Yc(Jw) is between a rate command and constant

gain system.

/k
The estimates for the total system Y_yc(j_) illustrate that, for these

various types of controlled elements_ the pilot tends to adjust his dynamics

in the region of crossover such that YpYc(jw) _ Ke -Tjw. In a variety of
Jw

previous simulation studies (e.g., ref. i), it also has been shown that the

pilot adjusts his dynamics such that Y_Y_(jw) approaches this form. Signif-

icantly both the simulator results and these flight test data indicate that

the dynamics of YpYc(J w) can be approximated (near crossover frequencies)

by a simple two-parameter model. For these flight test data, the dynamics

are found to have a crossover frequency K of i.i to 1.6 rad per sec_ and an

effective time delay T between 0.5 and 0.7 sec.

In summary, this paper illustrates a simple technique for identifying the

pilot/vehicle describing functions from routine flight test records. This

technique provides a straightforward method of analyzing and comparing the

dynamics of closed-loop attitude control tasks from actual flight test

operations.
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5. Application of Gabor's Elementary.Signal Theorem to Estimation

of Nonstationary Human Spectral Response *

E. R. F. W. Crossman**

and H. Peter Delp**

A BS TRA C T

The problem of estimating the human operator's non-stationary

spectral response using stationary force-functions or his stationary re-

sponse using transient inputs, is considered from a statistical viewpoint.

The disadvantages of using a moving boxcar data-window to form sequential

estimates are discussed as is the uncertainty relationship which controls

the compromise between frequency and time resolution.

A theorem of Gabor shows that the data-window form for minimum

uncertainty product is Gaussian; in this case

where cr t = RMS data weighting

at0 = RMS spectral weighting over the respective windows.

This relationship can be exploited to optimize the spectral estimation

procedure.

Empirical verification is provided for simulated and human data,

in the transient input case, and for filter response data in the time-

varying parameter case.

*This research was supported in part by the U. S. Public Health Service

under Grant UI00016-02 with the University of California, Berkeley.

**Department of Industrial Engineering and Operations Research, Human

Factors in Technology Research Group, University of California, Berkeley,
California.
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i. INTRODU CTION

The problem of estimating the human frequency-response function from

experimental data has attracted almost as many solutions as writers on the

subject, since Tustin's pioneer research first produced useful results [1].

The present paper adds one more to the list, and also provides an over-

view of some inadequately discussed topics in spectral statistics relevant

to human operator studies.

Due to equipment limitations, the now classical studies by Elkind [2],

McRuer and Krendel [3], Sheridan [4] and others employed analog methods for

filtering and performing spectral analysis. While certainly effective, these

are relatively slow and require expensive specialized hardware. They

also suffer from inability to modify the data-window, a troublesome con-

straint as will be shown later. Digital computer methods are now cheaper

and they also permit flexible use of data-windows. Our attention is therefore

confined to procedures that can be implemented on currently available digi-

tal data-processing systems.

While much effort in the biomedical, geophysical and other fields

has been devoted to elaboration of general purpose digital spectral-analysis

packages [5, 6, 7], and while manual-control researchers have also deve-

loped specialized techniques [8], our experience has been that none of the

available techniques quite met our needs. The main shortcomings were as

follows: (1) a lack of ability to form efficient spectral estimates of time-

varying parameters, (2) inability to form good spectral estimates from

human (and other systems') response to transient (nonstationary) inputs, and

(3) somewhat unsatisfactory estimates of reliability and confidence levels.

Since we needed all of these facilities for use in automobile/driver

studies, we were led to examine the fundamental spectral and statistical

constraints on the estimation process. This led us to note the perhaps

inadequately considered importance of the data- (or time-) window in forming

good spectral estimators. Literature search then revealed the existence of

a theorem, apparently first stated by Gabor [9] as an "elementary-signal

theorem," linking frequency and time-windows in an uncertainty relation

and pointing to the Gaussain data-window as a unique form which minimized

the product of frequency and time uncertainty. We have exploited this prin-

ciple by defining a new integral transform - the Gabor transform - and used it

to form spectral estimates from experimental time-series involving both

stationary and nonstationary signals and parameters. The resulting
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procedurewhichoffers significantadvantagesover anypreviousdigital
approachto transfer-functionestimation,is nowin routineusein our
laboratory.

Thepresentpaperoutlinesthestatistical andspectralconsiderations
leadingto theadoptionof theGabor-transformmethod,thendescribesthe
methoditself, andpresentssomedataillustrating its applicationsto esti-
mationof stationaryparametersfrom transientinputs,andtime-varying
parametersfrom stationaryinputs. Thetreatmentthroughoutis heuristic,
our intentionbeingto clarify the conceptualbasesof thetransfer-function
estimationprocessusingtheGabortransformrather thanpresentthenew
techniquein a rigorousmanner. Moresophisticatedmathematicaldevelop-
ments.willbeattemptedat a later date.

I.1 Transfer-Function Estimation as a StatisticalSampling Problem

As a number of recent papers and text books have made clear [10 ],

the empirical problem of determining the spectral response of an unknown

system component (in our case the human operator) is essentially a

problem in statistical inference conforming to established principles.

Confining our attention to bivariate statistics, we recognize the

idealized transfer-function parameter Y(j _0) (based on the usual stationary

linear model (Figure 1.1)

o(j¢o)= v(j_) • I(j_) (i.I)

where Y(j a_) = The ideal (vector) frequency response-function of a given

system

I(j w) = A vector input Fourier-component with angular frequency

_)

0(j w) = The corresponding vector output component)

as being the analog of the linear regression-coefficient b of time- free

statistics using the equivalent model

Z= b • X

where Z = the dependent variable (assumed to have zero mean)

(1.2)
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X = the independent variable (assumed to have zero mean)

b = a constant.

In the human case and for any other "black-box" component, we have

no direct means of observing the causal sequence corresponding to the fixed

parameter Y of the model, and we must estimate its value from sample

input and output time-functions. This process is analogous to forming an

estimate b of the "true" regression coefficient b from sample values of X

(x , z) in thin latter case we wouldand Z . Given only asingle sample pair " ^
choose the ratio b = z/x as estimator, but since no degrees of freedom are then

available to estimate the reliability (error of estimate) of b, this procedure

is never used in practice. Given more sample-pairs, we select the least-

squares estimator

A A

" coy (× , z)
b=

A

(×)
(1.3)

Unknown System

A

i(t)

I(j_)

Y(jw)
o(t)

A

o(j®)

FIGURE l.l: "BLACK-BOX" MODEL OF AN UNKNOWN SYSTEM COMPONENT
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^ ^ l n ^ ^

where coy (x, z) = _E]x • z

l n ^2

var (x) = -_E]x

1.2 Sinqle-Sample Estimation of Spectral Response

^ In the spectral case we likewise define the sin91e-sample estimate

Y at a given angular frequency w as

Y(jw) = F(o(t)^ ; jm)= ^ o (1.4)

F(i(t) _ j®) I(j®)
A

where i(t) is a sample input function, and F( ) represents Fourier

integral transformation at angular frequency w

o(t) is the corresponding sample output function.

A

Note that though i(t) and o(t) both contain many data-points,
A

0(jw) and I(j_) each contain only 2^degrees of freedom (their real

and imaginary parts) and their ratio Y , also contains 2. Thus no

degrees of freedom are available to estimate the error of estimation.

This is acceptable in noise-free laboratory determinations of spectral
A

response functions, where i(t) is a pure sinusoid and the unknown

system contains no source of random noise. If^the true response is

known to be nonlinear, the response estimate Y must be interpreted

as a particular rather than a generalized value, and Y(jw) is then

termed a describing function, but this will imply no error of estimate

in the statistical sense.

However, in human operator work we must assume that internal

noise is present. Even if the "real" transfer actually is linear,

an error of estimate will then be attached to Y , and we require

further degrees of freedom to assign confidence limits. Symbolically,

a single sample output 0(j_) must then^be modelled as a "genuine

transfer" term Y plus a "noise" term N (Figure 1.2)

^ ^

0 : Y • I + N . (1.5)

Thus (1.4) becomes

A

y Y. I+N

I

and the error of estimate t
A

(Y - y) : _ .

I

(1.6)

(I .7)

tThe term N/_ has been termed a "bias" in the literature, but it is

more correctly regarded as a random error of estimate, since it is

assumed that its expected value tends to zero as the length of record

tends to infinity.
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In the human case at least, this model cannot be verified by any more

direct method of obserwtlon, and the decomposition shown in F_gure
1.2 must remain a postulate. Thus precision of the estimate Y in

general requires a good signal-to-noise ratio,

^

Y • I >>N .

Since in the buma_ case N may be assumed broad-band, while the

sample estimates I , 0 are formed using a specific spectral window,

this requirement must be interpreted with the frequency-resolution
considerations discussed below in mind.

1.3 Multi-Sample Estimation of Spectral Response

The noise sample N(jw) , bein_ the Fourier transform of a single

(postulated) sample time-function n(t) , has 2d.f. which are merged in

the 2d.f. of Y . Hence (with a single sample) there will be no means

of estimating the error (Y - Y) . When two or more samples are

available for estimating a regression coefficient in t_me-free statis-
tics, we use the least-squares estimator 1.3 to form b .

The analogous formula for transfer-function estimation is

n

_[]0" I
A

V = n ^
^.j¢ •

EI I
(1.8)

This is equivalent to the familiar cross-spectral formula _

^ _oi

Y : (1.9)
II

Thus a cross-spectral frequency-response estimate is essentially a
regression of several output samples on the corresponding inputs, t

We note that the least-squares regression formulas (1.3) and (1.7)

provide maximum-likelihood estimates of the "true", (population)

values of parameters b Y(jw) "True" in this context simply
yonx '

means consistent over many samples, and real systematic bias due, for

instance, to nonlinearity, cannot be removed by this method. Put

another way, the noise terms in 0 are defined to sum to zero. If

they do not, the resultant cross-product^is indistinguishable from Y ,

and appears as (unobservable) error in Y .

It is taken as the regression of output on input, since causality is

assumed to operate from left to right (i to o) . No "physical

realizability" considerations arise at this stage.

¢We make no assumptions concerning the source of ! and the destina-

tion of _ . Thus in a closed-loop system the form _ec/_ee provides
an equally valid estimator of Y .
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1.4 Sampling-Error and Noise in Relation to Bandwidth of Spectral

Estimates

^ When we consider the nature of the sampling error represented by

N , spectral statistics and time-free statistics part company, since

in the former case we are dealing with a much more complicated

situation. One consequer,ce of this is that we must analyze the pro-

cedure used to form samples much more carefully.

Assuming that a time-sequential series of sample estimates Yk(jw)

are formed by application of Equation (1.4) to successive time-

records ik(t ) , Ok(t ) , after Fourier-integral transformation at
specific frequencies _ or a single compound estimate by applica-

tion of (1.8), _e recognize three distinct random terms contributing

to the postulated "noise" component N

(1) crossover from frequencies not equal to w_

(2) time-variation of the "actual" transfer Y

(3) samples of "actual" (broad-band) noise originating in the

unkno_n black-box represented by Y

Ideally we wish to eliminate (1), minimize the error due to (3),

and report (2) as a genuine result of the experiment. In order to

achieve all these goals attention must be paid to the "spectral

window" or bandwidth used in obtaining the original Fourier-transforms

or spectral estimates I(jw) , 6(jw) , _io ' etc.

Effects (1) and (3) can be minimized by choosing a narrow spectral

window, but this requires a long record, and effect (2) will then

become important. If the width of the spectral window is increased,

effect (2) will be reduced but (1) becomes important and spectral de-

tail is lost. With the exception of Sheridan's work [4], an implicit

rather than an explicit co_promise seems to have been adopted in all
the classical experiments. Our objective now is to gain better con-

trol over the compromise selected and hence to permit direct study of

time-variation and other nonstationary phenomena without sacrificing

spectral resolution or precise estimation.

1.5 Data-Windows for Multi-Sample Estimation

(1) Partitioned time-records

The simplest procedure for obtaining two or more spectral

samples to permit least-squares estimation of the transfer parameter

_by standardizing 4-minute experimental runs performed by highly prac-

ticed and hence probably "stationary" subjects; and by use of

carefully designed stationary mixed-sinusoid input functions.
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^

Y , is to divide up a single long record into successive parts and

form _k_ requlr_d spectra] samp]es L .... ,.:_ t. . ._...... >" LEII%IIIg l|]_ flniLe L_runcc][e(3)

Fourier-integral transform of each.

^ (j T) = _l ._^,(t)e-JWtdtIl=I w'2 T

I2= _ ,--

u

2;[ ^

= 1T j i(t)e'J_)tdt

T
kT

^ " 1 # ^ "I k = I(j_ , (k - ½)T) = T i(t)e-JWtde
J

(k-1)T
A

and similarly for 01_ . This is equivalent to applying a moving "box-
car" data-window cen_:'ered at s_mple times t = (k - ½)T thus partitioning

the complete sample-function i(t) , 0 < t < nT into n time-sequential

sub-samples, and hence permitting direct study of effect (2) above.

The penalty for adopting this procedure derives from the reciprocal

effect by which closing a data-window (by reducing the range of inte-

gration T ) opens the corresponding spectral window. The spectral
window (more precisely the spectral weighting function) corresponding

to a boxcar is its Fourier transform, which is a sin x/x functlon

(see Figure 1.3). Specifically

0 , t _ (k-l)T and t > kTData-wlndow D(t)

1 , (k-1)T < t < kT

corresponds to wT
sin --

2
Spectral window A(w) = wT

2

The "width" of the latter, measured to its first zero on either

side, is _w = 2/T , while AT = T/2 . However, this figure for

"width" markedly underestimates the effect of opening this particular

spectral window, which has side-lobes with significant power gain much
farther out than _ .

The effect of opening the spectral window by reducing T is to

"smooth" the estimated spectral response, markedly reducing spectral

resolution. The precision of the individual spectral estimate Y(j_)

is reduced in the following three ways. (I) More of the noise assumed

to originate inside the black-box and present in the output o(t) , is

admitted in the widened pass-band of the spectral window or filter

6(w) , causing random fluctuation of the output sample transforms

Ok(J_) • (2) If discrete frequency components are present in _(t)

at frequencies _ _ we the open spectral window will at some stag_=

admit them, causing (_ue to incoherent phase) apparently random

fluctuation in the estimate being formed atthe frequency of current

interest _ • (3) If the data-window is reduced so that &w approaches

equality with w_ (say _w > 0.2w_ ) the window has appreciable
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admittance beyond zero frequency , again causing random fluctuation

in the Yk "_ Thus both precision of estimate and spectral resolution

are sacr[Ticed by closing the data-window to obtain additional samples.

(2) Auto-correlation and the "laq window"

The above method of obtaining additional degrees-of-freedom

to form error-estimates thus seems subject to severe limitations and

we are not aware that anyone has employed it in actual research.

However, a standard procedure of digital spectral analysis involves

Fourier transformation of auto and cross covariance estimates (e.g.

[6, 7]) and this is subject to very similar constraints. Here the

required "box-car" data-window of length less than the (sample) record

length, is applied implicitly by selecting a lag-window less than the

duration of the record. The effective number of samples (and the

number of degrees of freedom) is n where

T
rec

Tlag

where T = record length (seconds)
rec

Tlag = maximum lag (seconds).

The loss of spectral resolution appears as a reduced number of

spectral estimates, but in compensation each is likely to have higher

ceherency, indicating greate_ reliability. This method, however,

totally confounds noise of the three types listed above, since the

whole record is used to form each of the n samples.

_(t)

____J" O[ J ....... t ] T

4 3 1

T T T T

I(o,)

_ _ "
T T T g

CO

FIGURE 1.3: THE BOXCAR DATA-WINDOW AND THE CORRESPONDING

sin x/x SPECTRAL WINDOW

4-

'This is "caused" in the time-domain by the data-window terminating

at random phases of the transform sinusoid sin w(t - (k - ½)T) .

89



2. APPLICATION OF GABOR'S "ELEMENTARY- SIGNAL" THEOREM

Generalizing from the above discussion, it seems clear that effi-

cient estimation of transfer parameters from pairs of sample-records

of given duration, requires something other than a boxcar data-window,

with its inevitable and highly undesirable consequence of a sin x/x

spectral window.

Considering the related problem of communication by amplitude

modulation of a fixed-frequency carrier as in pulsed radar , Gabor

was able to prove by wave-mechanical methods that no operation on an

unknown transient signal can reduce the product of its time-uncer-

tainty, measured by its time-distribution of energy , and its uncer-

tainty of angular frequency, measured by the angular-frequency distri-

bution of energy , below a certain limit. Specifically:

_T • _w m ½

where

AT = I/.m (D(t - T) )

2
dt

½

(i )1(A(m - )
0

This is a familiar modulation phenomenon. A longer-duration pulse, i.e.

one spread out in time, produces fewer sidebands, hence greater

frequency precision, while a shorter one, permitting exact timing,

spreads out more in frequency.

Gabor further showed that a pulse of Gaussian waveshape (and unit

area)

(t-to)2

2

1 2o t
w(t) :. ± e (2.1)

yields optimum (duration) x (bandwTdth) product, and achieves the

theoretical minimum product At • _w = ½ . This relationship may be

translated into more familiar notation by recognizing the defining

expressions for At, _w as standard deviations. Thus we have

' (2.2)°t " ow = _

where Ot = standard deviation of the modulating waveform (data-window)

Ow : standard deviation of the resulting spectrum expressed in
angular frequency.
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The Gaussian functlon is an intuitively correct choice of waveshape,

since a Gaussian time-function Fourier transforms into a Gaussian

frequency-function (with suitable treatment of the limits of integra-

tion). The corresponding spectrum is Gaussian and does not exhibit the

extended side-!obes characteristic of the sin x/x (Figure 1.3) spectrum

generated by a rectangular pulse (see Table 2.1)_

2.1 The Gabor-Transform Method of Forming Spectral Samples

Slightly extending Gabor's result for use in spestral estimation,

we may defTne a new integral transform, G, (the f'Gabor transform") of a

time-function x with arguments to( (the reference time), ot (the
half-width of the data-window), _ the center frequency)

G(x,jcu) = G(x(t),jW,to,Ot) =

2
(t-t o)

1 f 2_tZ1- x(t).e . e'JW(t-to)dt

(2_)2_t __

(t-to)2
l ? - 2_t 2
_r--- x(t). e

J
(2_)_ t __

• t-to))d
+ jw(

t (2.3)

This transform has certain useful properties apart from that of

minimizing the product of frequency and time-uncertainty

t
(1) Cutoff is sharp at around w • 3om and response decreases

monotonically in the skirts, so there are no side-lobes.

(2) Likewise, very low weighting is assigned to data outside the

time-interval to _ 3ot , so that the definite integral with

these limits cf integration is an excellent approximation to

the infinite integral (2.3).

(3) The widths of data-window or spectral window can be freely

adjusted and the reciprocal effects predicted exactly by

application of Equation (2.2)•

(4) Both data-window and spectral window are unimodal so that

the central regions (around to and w respectively) are

emphasized. This is particularly useful when dealing with

nonstationary and transient sample time-functions since

'To be exact, -39.15 db at these points; see Table 2.1.
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TABLE 2.1: RESPONSE OF GABOR-TRANSFORM AT DISCRETE FREQUENCIES

f' SEPARATED _f FROM A CENTER-FREQUENCY f

R = Af/of

0

0.5

O.85

1.0

1.5

2.0

2.5

3.0

4.0

Relative

Response

Amplitude

l

0.882

0.697

0.607

0.325

0.135

0.044

O.Oll

O.OO25

Power
Gain in
Decibels

0

- 1.08

- 3.0

- 4.34

- 9.74

-17.37

-27.16

-39.15

-72.05

- Center

- ½ Power Point

- Suggested Definition
of "Bandwidth"
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the Gabor transform can be taken with to set to maximize

the response for the event of interest.t

Unlike the Fourier-integral transform, the Gabor-transform has the

time-origin or reference-time to as an explicit parameter, and spectral

samples may thds be obtained with arbitrary spacing along a given time-

record.# We have found it convenient to refer to the timing of spectral

samples as "meta-time," while the frequency of variation of spectral

estimates (at a given frequency) is "meta-frequencyo"

2.2 Frequency-Response Estimates using the Gabor-Transform

Following Equation (Io4), a single frequency-response estimate is

naturally formed as the ratio of Gabor-transforms of output and input

sample time-functions with the same reference-time, frequency, and

data-window width

Similarly only

can be obtained.

^ GCo(t) , t r , w , ot )

Y(jw) = . (2.4)

G(_(t) , t r , w , °t )

1

This yields an estimate with spectral window °w = 2-_-t ' so that ot must be

chosen (1) to adequately discriminate against other discrete frequencies,

if any, present in i(t); (2) to yield the desired spectral resolution.

It is convenient to space successive time samples 2_ t apart so that
they are nearly uncorrelated. The number of samples (degrees of free-

dom) obtained from a record of length Tre c is then

T
rec

n = --- -1
2o t

max
nearly uncorrelated spectral estimatesm =-- =_tw2Ow max

^

The n time-sequential estimates Yk ' being identified with spe-

cific reference times t r = 2kot , can now be used to examine the
stationarity (statistical stability) of the total record, and to search

for parameter response to external events, etCo In the absence of

coherent time-variation, the error of estimation due to internal noise

may be estimated using techniques akin to analysis of variance, as in

the time-free case.

tWe note that as ot _ 0 , w _ 0 ; G(x , jw) becomes an operator

extracting a single time-sample from the function x(t) ; while as

ot _ _ it approximates to the infinite Fourier-integral transform

operator of classical spectral analysis.

_Under fairly general conditions the covariance between successive

samples wi|l evidently be a monotonically decreasing function of spacing.

However the actual function has not so far been computed.
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3. ESTIMATION OF STATIONARY HUKAN SPECTRAL-RESPONSE PARAMETERS FROM

TRANSIENT-INPUT DATA USING THE GABOR TRANSFORM

.... _ _ imet iv.._he application of th_ pfu_uuie outl:--_ in _--_'^- _

of stationary parameters with stationary (signal) inputs is obvious, and

no further discussion will be given° The remainder of the paper considers

application to two nonstationary cases, respectively signal input and

parameter change° To date attention has been confined to step-wise signals

and parameter changes, but the technique is in general applicable to any

nonstationary situations generally.

It has long been known theoretically that an unknown "black box"

can be identified by its step-response. This method offers advantages

of speed and economy over the more usual stationary-input technique but

does not seem to have been exploited at all widely in practice (for an

example, see Refo [Ill). Apart from rather minimal computational diffi-

culty, the main problems appear to have lain in achieving an adequate

signal-to-noise ratio, and in obtaining estimates of reliability of

results. A single transient-response only provides a single spectral-

response estimate at a given frequency, and one is thus forced to employ

spectral estimators of the form of Equation (1.4). Further, the energy

in a step-transient at any given non-zero frequency is confined to a brief

time period, whereas the energy in stationary noise is proportional to

the time over which the Fourier-integral transform is taken. Hence the

usual approach using a data-window wide enough to form estimates at low

frequencies admits unduly much noise energy at both low and high fre-

quencies, and estimates become highly unreliable. The situation is much

improved by employing the Gabor rather than Fourier transform to form

estimates.

Since a Gaussian data-window assigns maximum weight to input-output

pairs around the time-reference t r , it is natural to form these by
setting tr equal to the time of onset of the transient used as input.

The remaining problem then is to select o t for optimum spectral

resolution vs. noise-rejection. Constant ot provides constant

resolution, whereas we generally require logarithmic resolution. The

latter characteristic is given by o_ = w/R where R is a positive

constant; hence

I R

°t = 20 = 2_ "

In other words the data-window is opened more at lower transform-

frequencies, as one would intuitively think necessary. Correct choice

of the constant R is critical. With values below about R=3, the

spectral window extends beyond zero-frequency and "ringing" occurs, and

the spectral results are unduly coarse, while above this level the data-

window extends unduly far at low frequencies, requiring a lengthy undis-

turbed record before and after the transient being studied. At high

frequencies there is also an interaction with the original data-sampling

frequency (twice the Nyquist frequency), causing beats. Thus values

of 3 to 15 seem generally optimum. It should be further noted that

precise control of timing is required to provide exact phase estimates.
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3.1 Empirical Verification

Practice trials were run to verify the feasibility of estimating

spectral response from transient input (step) data using the Gabor

Transform method. The problem set was to identify a known first-

order filter with and without white Gaussian noise of RMS amplitude

approximately one-tenth the step amplitude added to the output series°

Figure 3oi shows a sample time-record for a noisy case and Figures

3.2, 3.3 show the spectral response-estimates obtained by averaging ten

sample-records by the method of Equation (1.8). It will be seen that

exact identification is obtained in the noise-free case, with confidence

limits (computed by way of coherency; see Ref. [10]) in the expected

range. In the noisy case it may be advantageous to increase R further

to improve precision of estimate at a sacrifice of spectral r_solution.

There is apparently a downward bias in gain estimates due to noise, which

will require theoretical investigation.

3.2 Human Operator Identification Using Transient-lnputs

As reported by Crossman and Szostak at the 1968 NASA/University

conference [12], it is felt that automobile/driver response to highway

forcing functions can be usefully modelled using highway curvature as

the effective input. As part of our experimental program we have

recorded a number of driver responses to curvature step-transients,

specifically the beginnings and ends of fixed-radius curves on a normal

country road. The model used is shown in Figure 3.4 and we are immedi-

ately concerned with identifying the system closed-lcoped response from

field data. A sample time record is shown in Figure 3.5.

Noise, some of it injected by the road surface and some by the

driver himself, is evidently present in the output record, whereas the

input may be presumed to be noise-free. A number of these records have

been analyzed using the Gabor-transform technique with various parameter-

selections. While our procedure for aggregating samples to obtain

smoothed "mean" spectral-response functions is still being perfected,

individual (single-sample) response plots all lie in the acceptable

range. System response as estimated from the single-sample record of

Figure 3.S is shown in Figure 3.6 t. This agrees reasonably well with

the vehicle-driver response predicted from stationary-input data.

tSince this is a single-sample case no confidence limits can be

given.
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4. ESTIMATION OF TIME-VARIATION IN HUMAN SPECTRAL-RESPONSE PARAMETERS

USING STATIONARY INPUTS AND THE GABOR TRANSFORM

Several authors have discussed time variation in human frequency

response, but to our knowledge only Sheridan [4] has provided substan-

tial data demonstrating internal changes due, for instance, to practice

and fatigue over periods of the order of tens of seconds. Further

phenomena producing time-variation in human response are learning

(Preyss and Meiry, [13]), adaptive response to changes in forcing function

(McRuer et al, [14]), plant dynamics (Miller, [15]), and shared atten-

tion in multiple tasks (Levison and Elkind, [16]), but relatively little

appears to have been accomplished in estimating the "meta-bandwidth"t

of the human operator's response to these "disturbances," or the mecha-

nisms involved in the response itself. These studies would be facili-

tated by possession of more powerful techniques for time-sequential

parameter estimation.

The basic Gabor-transform technique readily provides time-sequential

spectral samples of input and output fun]tions which in turn yield time-

sequential spectral response estimates Y (jw , tr) representing the local

mean response in the neighborhood _ of successive reference-tlmes, tro

It remains to consider the constraints limiting the "meta-bandwidth" for

detection of parameter variation°

4.1 Si._le-Frequency Identification of Parameter ChaCh@_n_.g_e_

Fastest identification is achieved by using only a single frequency-

component w c in the input sample function i(t). The spectral window

Ow may then be set = c%/3 and, by Equation (2.2), the corresponding
time window

3

_t : 2_ c

Since uncorreiated estimates are obtained with spacing

6

At _4o t = Wc

the time resolution of parameter estimates is approximately limited by

the period I/f c of the test frequency (since 2_ _ 6). For most

rapid identification we should therefore employ stationary narrow band

input signals centered on the frequency of interest.

We note that the price paid for obtaining good time resolution is

sacrifice of spectral resolution; in the above case the spectral-

response estimate is essentially the average response throughout the

tThe bandwidth of response to perturbations of input or plant para-

meter variations.

_The concept of neighborhood is interpreted in a root-mean-square

sense.
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range wc • 1.5o w , though there is some contribution from all fre-
quencies 0 to 6c_

4.2 Multiple-Frequency Identification of Parameter Chanqes

However, the human operator behaves abnormally with narrow band

inputs, and we are generally forced to employ random-appearing inputs.

In this case speed of identification is reduced by the need to avoid

"cross talk" between adjacent Fourier-components in the process of

sample-formation. Taking, for example, the SoT.I. forcing function
(Ref. [14], Table 4.1) we note that the spacing Aw between adjacent

components increases with frequency. In order to reduce cross talk to

an acceptable level, we must set 30 w _ _w (see Table 4.1). Since

_w is necessarily less than w , time resolution
c

1 _ 2_w)
/

is reduced in the ratio w /_w , compared to that obtained in the
c

slngle frequency case.

In both the above cases the estimates obtained are perturbed by

noise, and depending on signal-to-nolse ratio, one may be forced to

sacrifice time-resolution in the interests of improved stability of

estimate. The relationships involved have not been investigated in

detail at the present time.

4.3 Empirical Verification Using a Step-Wise Parameter Chanq_

The above theory was verified by setting up an "unknown" component

(a first-order filter), subjecting it to a parameter change at a random

time, and studying the time course of its estimated response-function.

Figure 4.1 shows the time course of the "unknown" component's

response to a sinusoidal forcing function. A sample record (Figure 4.2)

was then taken using the S.T.I. function as input, and subjected to

Gabor-transform analysis with o w set equal to 3.5 Aw (see Table 4.1),

in one case and with o t = 5 seconds (sample spacing 2or) , with the

results shown in Figures 4.3 through 4.5. The theoretical behavior

of the response-estimate sequence is substantiated since the amplitude

and timing of the step-wise parameter change can be readily identified
t

by inspection of the time-sequential estimate series at all frequencies.

It is apparent from these theoretical and empirical results that the

"meta-frequency" response of human operators can be readily determined

by application of Gabor-Transform methods to suitably chosen experimental

records, with parameters chosen to suit the problem in hand.

_The actual response estimate sequence is, of course, the convolution

of the step-wise imposed change in response characteristic with the

Gaussian amplitude weighting-function (data-window) used in Gabor

transformation.
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TABLE 4.1: S.T.I. FUNCTION SPECIFICATION AND SELECTED GABOR-TRANSFORM

PARAMETERS

S.ToI. Function Components

Frequency

(Hz) J (rps)
2,20* 13,80

1.21 7.57

0.642 4.03

0.404 2.54

0.237 1.490

0.154 0.969

0.0959 0.602

Normalized

Amplitude

0.I

1.0

1.0

1.0

1.0

1,0

1.0

(rps)

6.23

3.54

I.49

1.05

O.521

O. 367

O.209

a_ =

(rps)

I
l.78

l.Ol

O.426

O. 300

O. 149

0. 105

O.050

O,0626*

O.042*

0.025*

0,393

0.262

0.157

1,0

1.0

1.0

0,131

0.105

O. 105

0,037

O.O3O

O.O3O

I

aT = 2acu
(seconds)

O,28O

0.494

1.174

1.67

3.36

4.77

8.37

13,36

16.67

16.67

Not used in analysis
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"U;]e we do ,,vL cLir,,.,,_,; _wi,, _+ _÷ I.. have .....i_. _L • t _.... ,_, wor:,, presenting ;n ..i: =rea,

the new technique is proving effective in gaining and maintaining quality

control in tracking and other experimental studies in our laboratory.
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ABSTRACT

The performance of human pilot describing function models and human

tracking subjects with nonlinear controlled elements are presented and com-

pared. Nonlinear controlled elements were considered in order to simulate a

manual control system representing a limited or backup flight control system

that exhibits control displacement saturation on rate saturation character-

istics. The results show that an equivalent gain representation of the sys-

tem nonlinear element is possible using describing function models for slight

and moderate levels of nonlinear action. Further, the adjustment rules for
the parameters of the describing function models are predictable for the

class of controlled elements considered.

DISCUSSION AND RESULTS

To perform handling qualities and manual control analysis on a piloted

control system without costly andtime consuming pilot simulation, pilot

describing function models can be used to describe pilot response. Since the

first application of pilot describing function models (Ref. 5) many studies

have been made to develop and refine a set of adjustment rules (Ref. l, 2, 4)

for the parameters in the pilot models. Presently these adjustment rules and

P pilot describing functions aid in modeling pilot behavior when the controlled

element is linear and the input is random.

Little has been done to date to evaluate the usefulness of describing

function models in systems where controller nonlinearities are present. In

this paper we report on a study (Ref. 3) to develop control techniques and

adjustment rules that will extend the range of validity of these linear models

into regions of nonlinear controller operation.

In this study a representative family of linear controlled elements was

used. Previous studies (Ref. 4) have led to a considerable understanding of

the describing function adjustment rules for this family of controlled ele-

ments with random appearing inputs. Thus these controlled elements were used

here in order that further comparison could be made for nonlinear operation.
The controlled elements and nonlinearities considered are listed in Table I.

A block diagram of the closed loop tracking system used to evaluate and

comparethe describing function models and human trackers is presented in

Fig. 1. The human tracker was used as the standard of comparison against

which the pilot describing function was compared and refined. The system

input, el, was filtered Gaussian noise. Low pass filtering of the input was

necessary to keep the frequency content of the input below the model cross-

over frequency and thereby prevent tracker regression. The tracker's task

was to maintain the output, eo, as close to zero as possible (Error correc-

tion task). The performance measure used to predict Yp was the minimization
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Table I Control Systems Considered in This Study

Y
P

(Pilot Describing FCN)

-Ts
Ke

Tis+l

-Ts
Ke
P

-Ts
Ke
P

Kpe-TS(TLS+l)

Nonlinearity

Control Displacement

Saturation

Control Displacement

Saturation

Control Displacement

Saturation

Y
C

(Controlled Element)

K

K/s

K/s-2

Control Rate Saturation

with ]- Actuator K/s

s+l

m

of mean squared error (eo2). This performance measure has been used in pre-

vious experiments (Ref. 4) in the assessment of competing man-machine systems.

The tracking subjects used were both rated Air Force pilots and trained non-

pilots. There was some variability in individual performance as well as

between different subjects.

- Human --]rer 
L i: j

N.L,

e.

1

Fig. 1 Error Correction Task Control System
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Fig. 2 Integral Controller Element with Saturation

The error correction task control system was initially operated in the

linear region to verify previous results and to adjust and refine the param-

eters of the describing function model. Following these initial experiments

the nonlinearitywas introduced. As the tracking task was extended into the

nonlinear region of operation, the parameters of the describing function model

were adjusted based on predictions made using the nonlinear random process

describing function theory and known linear pilot adjustment rules. In addi-

tion, trial and error techniques were used to adjust the pilot models when

the describing function technique failed (i.e. the nonlinear element would no

longer be represented by a pure gain).

A complete discussion of the tracking experiments and of the detailed

adjustment rules that were developed for the pilot describing function model

operating with nonlinear controlled elements is beyond the scope of this

short paper and is discussed elsewhere (Ref. 3). However, to illustrate the

type of comparative performance that was obtained and the type of data taken,

the results of one of the tracker experiments using a pure integration con-

troller with saturation are presented here. The block diagram for the

saturation-integral controller is given in Figure 2.

For the case of T = .2 the comparative performance of the trackers and

the model is presented in Figure 3. Each point on the figure represents an
average of ten one-minute data runs each for the model and tracker. The

segmented vertical line at each data point indicates • one standard deviation

of ten performance runs evaluated at each point. Where no standard deviation

is indicated, the value was less than the height of the symbol marking the
point. The region to the left of the broken vertical line indicates the

region where it is no longer possible to make theoretical predictions of Y

and closed loop mean-square error. P
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The results presented here and the more complete study (Ref. 3) from

which this material has been drawn, demonstrate that pilot describing functio_

models for linear controlled elements can be usefully extended into nonlinear I
regions of operation. The adjustment rules for the parameters of the pilot

describing functions are predictable for slight and moderate levels of satura-

tion and rate limiting. In future studies this work will be extended to

multiple nonlinear elements, real "aircraft" dynamics, and multi-axis simula-
tion.
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7. A Study of the Variability of HumanOperator
Performance Based on the CrossoverModel*

August L. Burgettt"

University of South Florida Tampa, Florida

ABSTRACT

A parameter identification method based on regression analysis is

used to analyze human operator performance in two compensatory tracking

experiments. The parameters which are estimated and analyzed are human

operator gain K and time-delay T based on the crossover model. The

approach taken in the analysis of the parameter values is to divide the

variance of both K and T, based on 20-second data intervals, into the

within-subject and between-subject, components for each day of testing.

The results indicate that the human operator i) adopts a more consist-

ent "signal processing path" as he learns the task 2) adopts a more

uniform control strategy for the more difficult of the two experiments

3) has an inherent variability of gain on which training has little

effect.

INTRODUCTION

The use of a random input describing function to describe the

human operator in compensatory tracking tasks is expressed well in the

comment by Elkind [5]. "The essential idea of the describing function

approach is that the dynamic characteristics of the human pilot, which

are non-linear, noisy, and time'varying, can be represented by a linear

time-invariant operator Yp(s) (the describing function) and a remnant

noise n(t), added to the output of Yp(s)." A representation of the ran-

dom input describing function model of the human operator is shown in

Fig. i. This description implies that the remnant term is an additive

signal. This formulation of the remnant is actually a computational

artifact since there is strong evidence that the remnant is composed

of terms due to such human operator characteristics as nonlinearity

and time-variation as well as a certain amount of additive noise [ii].

_This research was sponsored in part by the National Aeronautics and

Space Administration under contract NASr 54(06) while the author was

at the University of Michigan.

1"Assistant Professor in College of Engineering.
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Several studies of the time-varying and nonlinear aspects of the

human operator have been performed [2]. These studies can be inter-

preted as efforts to account for some of the remnant signal which is

part of the describing function characterization.

Two _pproaches that have been taken in studies of human operator

time-variation are discussed here. One approach is to represent the

human operator by a time-varying weighting function. Estimates are

then obtained for this time-varying weighting function. Elkind [4]

has applied a regression analysis technique to this problem and

obtained a piece-wise constant representation of _e weighting function.

Wierwille and Gagn6 [16] have generalized this approach to a method

which gives a continuously varying estimate of the time-varying weight-

ing function. Both of these methods give a good qualitative represen-

tation of the human operator time-variation. However, a time-varying

weighting function is not an easily interpretable description of time-
variation.

Another description which is a restricted case of the time-varying

weighting function is to represent the human operator by a time-varying

differential equation. This is equivalent to an a priori specification

of the form of the weighting function. This a_roach has been taken by

McDonnell [13]. The par ticular method used by McDonnell was to assume

that the human oper@tor could be represented by a modified crossover

model - modified in that the gain is not considered to be constant.

McDonnell's results suggest that this is a reasonable representation

of the human operator. Having estimates of time-varying parameters of

the human operator provides a more interpretable representation than

does a time-varying weighting function.

One approach to the study of nonlinearities of the human operator

has been proposed by Wierwille and Gagn6 [17]. The method makes use of

preselected nonlinearities which are operated in parallel with the

human operator closed-loop system. A less general approach to analyz-

ing human operator nonlinearity has been taken by Smith [14] and Young

and Meiry [15]. The results presented in both papers indicate that for

certain tasks the human operator utilizes a saturating or bang-bang

type of response. Although this effect is not readily apparent in all

control situations, these results give a basis for assuming that a

portion of the human operator remnant is due to some type of nonlinear-

ity.

The approach taken in this research is to model the human operator

with the crossover model. However, both the gain K and time-delay T of

the model are allowed to experience slow time variations. This is

accomplished by dividing each two-minute trial into five non-overlapping

20-second subintervals. The best estimate of both K and T are then

found for each 20-second interval.

A major analysis technique employed in this work is to obtain

estimates of the within-subject and the between-subject variance of

both the gain and the time-delay of the human operator for each day of

testing. The estimates of the variance components are then used to

make inferences about such characteristics of the human operator as
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sources of remnant, uniformity of human operators for the controlled

elements used and the effect of training on human operator signal pro-

cessing.

COMPENSATORY TRACKING TESTS

The data that are analyzed in this report are the results of ex-

periments performed by Jackson and are described in detail elsewhere

[9]. For completeness of this report, however, the major aspects of

the experiments are presented here.

The general arrangement of the experimental set-up is shown in

the block diagram of Fig. 2. The oscilloscope used was a 5-inch

Fairchild x-y indicator with a P-31 phosphor coating. The oscilloscope

display was in the form of a dot which moved horizontally with respect

to a vertical cursor located in the center of the screen. The dis-

placement of the dot from the center was proportional to the system

error. The face of the oscilloscope was located approximately 28 inches

from the eyes of the subject.

The subject was seated in a straight backed chair with his right

arm on the control stick. The stick is of the side arm type, i.e., the

subject's elbow joint was constrained to a fixed angle of about 90 de-

grees. This type of control stick constrains the arm motion of the sub-

ject to rotation at the shoulder joint using such upper torso muscles as

the subscapularis and infraspinatus [8]. The control stick incorporates

a light spring to provide an indication of the center position and has

essentially no damping. All subjects were right handed males with no

known physical abnormalities.

The experiments had two distinguishing characteristics, controlled

element and subjects involved. The transfer function of the controlled

element for the first experiment was YC(S) = 5/s while the transfer

function of the controlled element for the second experiment was

YC(S) = 5/s 2. Each experiment had a separate group of three subjects

who took part.

The input signal for these experiments was pseudo-random noise

which had an approximately gaussian amplitude distribution [7]. In

both experiments the subjects were tested for a total of ten days.

Within each day, each subject completed five two-minute trials at each

of three input cut-off frequencies i, 2 and 4 rad/sec., for a total of

15 trials each day. The blocks of trials for a given cut-off frequency

were randomly ordered on each day of testing. The data for a cut-off

frequency of 2 radians per second are the only data analyzed and dis-

cussed in this report. For the single integrator controlled element

the second, sixth and tenth days of testing were analyzed. For the

double integrator controlled element the third, seventh and ninth days

of testing were analyzed. All indications are that the results for

the intermediate days of testing are consistent with those analyzed.
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PARAMETER TIME HISTORIES

One method of analyzing the parameter values obtained was to

study the time histories of the parameters. It was thought that a

subject might follow some consistent trend in the variation of gain

and time-delay during a trial or during a single day of testing. This

type of consistency would become apparent from a visual examination of

the parameter time histories. Typical parameter time histories for

one day of testing are shown in Fig. 3. It is apparent from the time

histories such as that shown that the subjects did not have any con-

sistent trends in gain or time-delay within a single day of testing.

STATISTICAL ANALYSIS OF DATA

A second method of analyzing the parameter values was to consider

the two parameters, K and T, as independent random variables. With

this point of view the distributions of the parameters might well give

some insight into subject behavior.

Rather than study the entire distribution of each of the param-

eters it was decided to study the mean and variance of each distribu-

tion. Since the mean and variance of a random variable are theoretical

parameters which are not measurable, it is necessary to obtain estimates

of these quantities from the empirical data. The sample values of K

and T were obtained on each day of testing for each of twenty-five 20-

second intervals of data for each subject. This gives a total of 75

estimates of both K and T for each day of testing.

Parameter Average Values

On a given day of testing the sample average for either parameter

value for a given subject is represented by

25

= 1 xij i = 1,2,3 (i)
j=l

It can be shown [i] that Gi is an unbiased estimate of the true mean

value, _i" In Eq. l, the xij represent samples of either K or T.

The parameter average values are presented in Fig. 4 for the case

YC(S) = 5/s and in Fig. 5 for the case Yc(S) = 5/s 2.

Two major characteristics of the average parameter values are

apparent from Figs. 4 and 5, namely:

i) The daily average value of K increases _th learning.

2) The daily average value of T decreases with learning.

Other investigators [9] have presented data which shows error scores

that decrease with learning. Thus one interpretation of the character-

istics of the average parameter values mentioned above is that in the

process of consciously attempting to improve his error score the sub-

ject increases his gain, K, and shortens his time-delay T.
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This interpretation is borne out by the following analysis. The

spectral density of the system error signal can be written as:

1 2 Yc (j_)

%(j_) = Ii + Yc(j_)Yp(j_) I _(J_) + II + Yc(j_)Yp(j_)I2_ (j_)
(2)

where the various signals are those given in Fig. 1 for the equivalent

human operator. Let us take the simple case of YC(S) = i/s and assume

that the crossover model gives a sufficiently good representation of

the system. Then,

Ke-J _T

YC (j_)Yp (j_) = j_ (3)

_2

2m _2 _(j_)
and %(J_) = K2[I - _-- sin_T + _-f]

1
+ %(j_) (4)

2_ _2
K2[I _ sin_T +_-_]

The reasoning followed in this analysis is that if the spectral density

of the error signal,$e(j_) , is small then the error signal itself is,

in general, small. Now consider the following cases.

i) T fixed: Inspection of Eq. 4 shows that for this case,

2)

_(j_) decreases as K increases.

K fixed: Again inspection of Eq. 4 shows that for small values

of T the denominator of both terms increases for

decreasing value of T. Thus _(j_) decreases as T

decreases.

Thus it is seen that increasing the value of K and decreasing the value

of T corresponds to decreasing the magnitude of e(t). A third mecha-

nism for reducing _(j_) is to reduce the remnant signal, n(t). Note

also that _(j_) is not necessarily independent of the value of K and T.

Variance of Parameter Values

In the analysis of the variance of the parameters, K and T, the

following approach is taken. The total of three subjects on any given

day of testing is considered as a source of a population, AK, of values
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of the random variable K and also as a source of a population, AT, of

values of the random variable T. Within the total population, either

A K or AT, there are three subpopulations, AKI , AK2 , etc., each repre-

senting parameter values for one of the three individual subjects. It

can be shown [i] that the total variance of either K or T is given by

_2 2 + 2
= ow _ (5)

For the approach outlined above, the first component of the total

2 is given byvariance, the within-subject variance o W ,

3

2 1 0.2. (6)%=5 E i
i=l

2
The O i represents the variance of the parameter value within each of

the three individual subjects. The second component of the total

variance is the between-subject variance, o_ , and is given by

3
2 i

OB = 5 E (_ - _i ) 2
i=l

(7)

The _i represent the average parameter value for each individual subject

and _ represents the average parameter value for the total of three

subjects. Thus,

1 _ (8)
P = 3 Pi

i=l

To study the components of variance of K and T given by Eq. 5,

unbiased estimates of the elements of this equation are obtained from

the empirical data. It can be shown [i] that the following are unbiased

estimates, i.e.,

E[MSTota I] = 0 2 (9)

2 (10)E[MSw] = _W

2 (11)
E[MSB] = UB
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where

3 25
i

MSw = (xij
i=l j=l

(12)

3
1

MS B 3 _ (___i)2 2= 75 MSw
i=l

(13)

3 25
i -- 2 i

MSTotal = 7-_ _ _ (xij - Gi) 74 MSB
i=l j=l

(14)

and
In Eqs. 12 through 14, xij represents a sample of either K or Y,

3
1

i=l

(15)

The total variance and the components of the total variance were

calculated for both K and T for the days of testing given previously.

The results of these calculations are presented in Figs. 6 and 7.

Before proceeding further, let us define parameter time-variation.

It has been shown [i0] that small variations of gain and time-delay can

be represented by an equivalent additive noise term. Thus the problem

of separating the remnant term into components due to parameter time-

variation and due to motor or additive noise is indeterminate. Also,

Wierwille and Gagn6 have pointed out [16] that if no constraint is placed

on the rate of variation of the parameters or gains that "...instead of

having the time-varying gains follow the changes in the human operator's

dynamics, the gains simply track the (output) signal itself". Thus one

arbitrary method for partitioning the remnant term would be to attribute

low frequency components to parameter time-variation and high frequency

components to motor noise. The distinction between low and high fre-

quency is also a question which each experimenter must decide. As

implemented here, the parameters K and T are restricted to frequencies

on the order of one cycle per minute and lower by virtue of taking the

best parameter values for successive 20-second intervals '.

Jackson has shown [9] that the human operator remnant is larger

for the case of the double integrator controlled element than for the

single integrator controlled element. In addition, it has been postu-

lated in the literature [11,12] that this increased remnant is due to,

among other sources, a more pronounced time variability of the human

operator in the first case. If this is true, then the within-subject

variance of the parameters should be appreciably larger for the double

integrator controlled element. The data of Figs. 6 and 7 show that the

within-subject variance of the time-delay is indeed larger for the

double integrator plant but that the variance of the gain is smaller.
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One formulation of the remnant [i0] includes a term due to the variation

of the gain multiplying the error signal and a second term due to the

variation of the time-delay multiplying the error rate. Since the error

rate signal will have more power in the crossover region than will the

error signal, it appears that an increased within-subject variance for

the time-delay can account for a larger remnant even with a correspond-

ing u=uL==_= _L the variance uf _^ ---_--LILt _.

Another observation that can be made is that the within-subject

variance for K shows very little change as the subjects learn while the

within-subject variance for the time-delay shows a marked decrease with

learning. This is a significant finding which has not been reported

previously. The fact that the within-subject variance of the gain, K,

is essentially constant for all days of testing indicates that there

is an inherent variability in the gain on which training has little

effect. On the other hand, the decrease in within-subject variance

for the time-delay indicates that the variability of T is a character-

istic of the human operator which is very dependent on the amount of

training.

One explanation of the relationship between variability of T and

training is the following. From Figs. 4 and 5 it is seen that the

subject increases his average gain and decreases his average time-delay

as he learns to perform the compensatory tracking task. These learning

trends were associated with a conscious effort on the part of the sub-

ject to reduce the system error. The total results then indicate that

in the process of learning, the human operator not only reduces the

average value of his time-delay by consciously trying to do a better

job of tracking, but also subconsciously adopts a more consistent sig-

nal processing mechanism. One analogy that has been suggested [6] for

the mental operations inherent in the learning process is a modern

electronic data-processing system. Using such an analogy, the signal

processing mechanism mentioned above would correspond to the computer

program used in the performance of the tracking task. This program

would consist of many subroutines which can be changed or modified.

The large initial within-subject variance of T would correspond to the

subject experimenting with a wide variety of subroutines. Then as the

subject learns he would reduce the variety of subroutines that he tries

as well as modifying the complete program to make it more efficient.

In experiments of a different nature, learning to roll cigars, Crossman

[3] has arrived at a similar description: "The writer has taken the

basic premise that a learner faced by a new task tries out various

methods, retains the more successful ones and rejects the less success-
ful ones".

Along this same line, it is seen from Figs. 6 and 7 that the

within-subject variance of the time-delay is appreciably larger for

the double integrator controlled element than for the single integrator

case. This in all likelihood is due to the increased difficulty of the

double integrator case. More important than the relative magnitudes is

the noticeable decrease of the within-subject variance in Fig. 7

between the seventh and the ninth day of testing. This indicates that

the subjects have not completely learned the task by the ninth day of

testing. The average parameter values presented in Figs. 4 and 3 do

not show as readily this apparent incompletion of learning. Thus

the results suggest that the variance of a human operator's time-delay
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is a moresensitive criterion of learning than is the meanvalue of
the time-delay.

The similarity betweenthe time-delay within-subject variance
curves for YC(S) = 5/s and YC(S) = 5/s z is not apparent from Figs. 6

and 7. However, in Fig. 8 where the same data are plotted on a

logarithmic scale, it is seen that the curves are strikingly similar

except for magnitude. From Fig. 8 then, it can be concluded that the

effect of training on the time-delay variance is similar for both con-

trolled elements.

Another observation that can be made from the data presented in

Figs. 6 and 7 deals with the between-subject variance of gain and

time-delay. It is seen that on the final day of testing the between-

subject variance for both parameters is much smaller for the double

integrator case than for the single integrator case. This agrees with

the finding of McRuer, et al. [12] that the more difficult task con-

strains the subjects to behave in a uniform manner. Also, for the

single integrator controlled element the between-subject variance for

the human operator gain is much more pronounced than for the time-delay.

This indicates that for the more easily controlled case, the human

operator gain is a better indicator of individuality than is time-delay.

SUMMARY

In this research the crossover model [12] for the human operator

in a compensatory tracking situation is used. The values of K and T,

the gain and time-delay respectively of the model, were determined for

successive 20-second intervals throughout the experiments. Using this

data interval it was possible to obtain parameter estimates for twenty-

five intervals for each of three subjects during each day of testing.

The results based on a study of the mean and variance of the K and T

are :

i) Average human operator gain, K, increases with learning.

2) Average human operator time-delay, T, decreases with learn-

ing.

These trends are interpreted as being the direct result of the

subject learning to do a better job of tracking.

By making use of the fact that the total variance of both K and

T can be separated into a within-subject and a between-subject compo-

nent for each day of testing, the following results were obtained.

i) The human operator adopts a more consistent perceptual-

motor signal processing path as he learns the tracking

task.

2) For the single integrator controlled element, the average

value of K is a better indication of individuality in the

trained human operator than is the average time-dela y.
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3)

4)

5)

For the more difficult to control double integrator con-

trolled element, the subjects adopt more uniform average

values of gain and time-delay than for easier control

tasks.

The variance of T appears to be a more sensitive indicator

of learning than the average value of either K or T.

There appears to be an inherent variability in the human

operator gain on which learning has little effect.
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8. An Investigation into" ...... :" " ..-ru,_u,, Tracking in .,,=

Presence of a Disturbance Signal

L. i). Reid

University of Toronto Institute for Aerospace Studies

The description of man as a servo control element while

performing manual tracking tasks has been most useful in helping

us to understand this complex situation. Most of the theory con-

cerning this man/machine interaction has been developed for the

compensatory tracking task with recent efforts being directed to-

wards the expansion of the present theory to cover the more com-

plex situations of pursuit tracking and multiple loop tasks. The

present paper deals with the measurement of pilot describing func-

tions in a pursuit tracking task with system disturbances when the

input power spectra are continuous in nature. In this program the

RMS levels of the primary input and the system disturbance are the

same.

PURSUIT PLUS DISTURBANCE

PILOT DESCRIBING FUNCTION IDENTIFICATION

The compensatory tracking task is modelled as in Fig. i

where the remnant time signal n is included in order to account for

any signals in the man/machine loop which are not linearly related

to the input i. In order to establish a criterion for the choice of

pilot model consider the presently used describing function I for the

compensatory task based on signals found in Fig. i.

Y(j_) = @io(J_)/@ie(J_)

¢in(J_) = 0

If Fig. i is redrawn as the point by point sum of the two linear sys-

tems of Fig. 2 it can be seen that p (that input to the vehicle due

to n) can be written as

p= o-ZT= o-i Y(s)
1 + A(s)Y(s)

If Y is chosen so as to minimize the RMS value of p by using the theory

of Appendix A, it is found that

Y(jm) = ¢io(Jm)/¢ie(Jm)

¢in(J_) = 0

In a single degree of freedom pursuit task the pilot receives
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2 inputs while producing a single stick output and tb_s leads to se-

lecting a pair of linear systems to model the pilot. Two possible

choices for this pair of linear systems are given in Fig. 3, where

n is the remnant signal and g is the system disturbance. If the

linear system employing YI and Y2 is redrawn as the point by point

sum of the 2 linear systems of Fig. 4 it can be seen that p (as in
the compensatory task) can be written as

..... Y2(s) -g Yl(s)
p = o - o' = o - i 1-A(s)Yl(S) l-A(s)Yl(s)

Thus, in order to select a Y1 and Y2 based on the same criterion as

the compensatory pilot model a choice will be made which minimizes

the RMS value of p. If this minimization is carried out using the

theory of Appendix B it is found that

i

YI(j_) = i/(_ + A(j_))

Y2(j_) = (I-YI(j_) A(j_)) ¢2(j_)

¢l(jm) = @go(je) ¢ii(_) - ¢io(j_) @gi(Jm)
¢ii(_) _gg(_) - ¢ig(J_) Cgi(J_)

¢2(j_) ¢io(J_) ¢_(_) - ¢_n(j_) ¢i_(_)
= ¢ii(_) Cgg(_) ¢ig(Je) Cgi(J_)

Cjn(j_) = 0

Cgn(Jm) : 0

provided that i and g are not completely related by a linear transfer

function. In a similar fashion, if Y3 and Y4 are chosen to minimize
the RMS value of p, it follows that

Y3(j_) = Y2(j_)

Y4(j_) = YI(j_) + Y2(jm)

¢in(J_) = 0

Cgn(J_) : 0

These formulations are the basis for experimentally determining models

of human pilots for the pursuit plus disturbance task. Note that the

pair of transfer functions can be simultaneously identified over the

same frequency range of interest.

In order to obtain a measure of the adequacy of the measured

describing functions p2(m) has been defined as
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= i -

which for the compensatory tracking task works out to be

_ l io(j )l2
$ii(_)$oo(_)

and for pursuit plus disturbance tracking works out to be

P2(m) = I i I2 ] [ IY2(Jm)l 2
i-A(j_)Yi(jm) $--_o(-_7

+ 2 Re[Y2*(jm) Yl(jm) ¢ig(J_)]]

A value of p2 near unity indicates that the describing function

accounts for most of the pilot response.

eli(m) * IYi(jm)12¢gg(m)

Data Reduction Technique

The calculation of the power spectra required for the es-

timation of the describing functions was performed by sampling the

necessary time records at a rate of 20 samples per second and re-

cording this data on a digital magnetic tape. An IBM 7094 computer

was then employed to calculate the power spectra by Fourier trans-

forming correlation functions. This program utilized the fast

Fourier transform in calculating the correlation functions. The

time records were 180 secs. long and the maximum time delay asso-

ciated with the correlation functions was 9.95 secs. The program

outputs power estimates at 0.632 radians/sec, intervals starting at

0.316 radians/sec.

The continuous input power spectra utilized in this pro-

gram are shown in Fig. 5. They were formed by passing the output of

a Gaussian noise generator through suitable filters. Following the

suggestion of Ref. i a low amplitude high frequency shelf was in-

cluded on inputs L, M and H in order to extend the range over which

measurements of describing functions could be performed.

The ability of the program to calculate transfer functions

was checked by identifying linear systems (or analog pilots) opera-

ting in the same feedback loop that the human subjects would use.

The complete range of inputs, display modes and vehicle dynamics were

tested. A typical test system is shown in Fig. 6 and the corre-

sponding measured transfer functions are presented in Fig. 7, along

with p2. The following conclusions resulted from these tests:

i. The identification of models with the VL input must be

restricted to values of _ < 9.16 radians/see, due to low input power

outside this frequency range. For all other inputs this range ex-

tends to 15.47 radians/sec.
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2. The pilot model identification for the pursuit plus dis-

turbance task has greater variability than that for the compensatory

task because of the greater number of spectral quantities which are

involved. This situation can be improved by using estimates of the

power spectral densities averaged over 2 consecutive runs.

3. The identification of p 2 at the lowest frequency point

for tasks with rate control can exhibit large errors. This is due to

the low frequency droop in @ee caused by the high gain of the rate

dynamics at low freauencies. (Fig. 8 is a plot of Cee for such a

case ).

Since the signals i and g used in the present program are

different outputs from a Gaussian noise generator it is expected that

the estimates of ¢ig and Cgi used in calculating YI and Y2 should be

close to zero. A typical measured value is shown in Fig. 9 as a plot

of _ii Cgg/l¢igl 2. It is seen that this ratio varies from 8 to 300.

In order to determine whether the complexity of the expressions used

to calculate YI and Y2 could be reduced by ignoring terms containing

@ig or Cgi a sample identification of an analog pilot was performed
for the following 3 cases:

i. All terms containing @ig or @gi were dropped.
2. All terms containing the product #ig Cgi were dropped.

3. No terms were dropped

Fig. i0 shows the results for the identification of [YII as a typical

example. From this it is seen that no terms can be dropped in cal-

culating YI and Y2.

When utilizing the pair of linear models to detect pursuit

behaviour the model employing Y3 and Y4 is useful, for if a subject
performed a task with the pursuit display in a compensatory fashion

he would operate on the .e signal alone, generating a Y4 identical to

zero. In order to evaluate the ability of the present analysis tech-

nique to detect this condition it was simulated by identifying a linear

analog pilot in a system like that of Fig. 3 with Y4 = O. The results

of the identification are shown in Fig. Ii as plots of the real and

imaginary parts of the measured Y4 along with Y3 for comparison. These

results indicate that this mode of behaviour should be easily detected

with the present technique.

Experimental Program

The main portion of the experimental program was performed

by 8 male volunteer subjects from the staff and students of the

University of Toronto Institute for Aerospace Studies over a 2-year

period. In discussing the experimental conditions the following
short form notation is introduced.

PD - pursuit tracking with a secondary disturbance
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PP - pure pursuit, no secondary disturbance

C - compensatory tracking

K - position control, pure gain dynamics

i/s - rate control, pure velocity dynamics

i/s 2 - acceleration control

SI-SI0 - subjects i to i0

VL - very low frequency input power spectrum

L - low frequency input power spectrum

M - medium frequency input power spectrum

H - high frequency input power spectrum

STI - input made up of the sum of i0 sine waves.

The subjects sat in the cockpit of a CF-100 flight simu-

lator (see Fig. 12) and performed the tracking tasks with a low

inertia stick. The 20 in. stick consisted of a hollow aluminum

tube with a balsa wood hand grip (weight 6 oz., CG 12 in. above

the pivot) connected directly to a linear continuous resolution

potentiometer, with no centering springs or viscous damping.

Stick travel was limited to + 17.5 ° fore and aft. The pilot's

display was a Dumont type 333 dual beam oscilloscope utilizing

+ 2 in. of horizontal deflection. The display was located 28 in.

from the subject's eyes. In the compensatory mode the display con-

sisted of a fixed yellow horizontal reference line and a moving

green error bar. In the pursuit mode two moving green markers were

employed, an open 0.25 in. diameter circle representing the pilot's

aircraft position and a i in. line representing the target air-

craft's position.

The dynamics of the vehicle and conditioning of time sig-

nals were accomplished through the use of an Electronic Associates

TR 48 analog computer. The polarity of the system was such that

pulling back on the stick caused the controlled vehicle to climb.

In the compensatory task this was indicated to the pilot by a climb-

ing error bar. The system gains selected in inches of displacement

on the display per degree of stick deflection were 0.114 in./degree

for the position control dynamics and 0.338 in./degree/sec, for the

rate control dynamics. The input signals had negligible DC com-

ponents and for the C and PP tasks the RMS of i was 0.5 in. while

the RMS of (i-g) was 0.5 in. with the RMS of i equal to the RMS of

g for the PD tasks. The signal i always had the same spectrum as

g for any given run.

The instructions to the subjects were to minimize the mean

square error and it was emphasized that a doubling of the displayed

error would lead to a quadrupling of the score. The task was des-

cribed as the simulation of aircraft mid-air refueling with both

aircraft subject to disturbances from rough air, the displayed var-

iable being altitude. The subjects were instructed to follow high

frequency components in the display if it did not cause their scores

to increase. The score was taken to be i00 times the subject's mean

square error divided by the mean square error that would have

occurred if the pilot had held the stick centred throughout the com-

plete run.
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Thus

compensatory or

pure pursuit score
= i00 e-7

i 2

pursuit plus 1disturbance score
= i00

m

e2

(i-g)z

In order to minimize fatigue and at the same time have a sufficiently

long Tun length to allow identification of the describing functions

at the low frequencies each tracking run lasted 190 sec. Each sub-

ject performed 3 such runs separated by a 2 minute rest period per

session. An initial set of runs (about 50 per subject) over a perf-

Jod of 4 months was used to determine reasonable system gains. These

runs performed by SI to $8 covered PP and C displays and K, i/s and

i/s 2 dynamics with an L input. During this series of runs it was

found that the subjects could not achieve scores below i00 with i/s 2

dynamics and that no difference in scores between PP and C tasks

existed. At this point i/s 2 dynamics were dropped from the project.

Subjects SI to $8 each performed an additional set of over

250 training runs over a period of 8 months covering the various com-

binations of di,splay (PD,C), dynamics (K, i/s) and input spectra

(L,M,H). A subject was considered trained at a given task when a

graph of score versus run number achieved a reasonable plateau of

less than i00. $2 and $7 did not achieve this level of training with

i/s dynamics. However, these 2 subjects continued on in the project

in hopes of detecting why they had difficulties.

The main body of the experiment consisted of the series of

runs as presented in Table i. The order of presentation of the tasks

was randomized in order to eliminate systematic error due to order-

ing the tasks. Each cell in the table corresponds to ii replications

of the task, the last 6 of which were recorded and used for the

measurement of describing functions. The results of this set of

runs indicated that there was no difference between the scores gen-

erated by the 2 display modes. Because of the results reported in

Ref. 5, where a significant difference in performance was found for

the K dynamics case between PP and C displays for the lower input

bandwidths, it was decided to perform an additional set of runs using

the VL inputs. Subjects SI, $3, $6 and $8 performed these runs.

Again no differencesl in scores were found. As a final check subjects

SI, $3 and $8 each performed runs using input STI (which duplicated

input _i = 1.5 of Ref. 5 ) for PPK and CK tasks. It was found that

they achieved the same compensatory scores as in Ref. 5 but that

their PP scores were higher and not different from the compensatory

scores. The average scores (excluding $2 and $7) are shown in Fig.

13. Note the large change in scores in going from L to VL inputs.

The final portion of the experiment consisted of the measure-

ment of the describing functions of 2 untrained subjects ($9,SI0) as
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they learned to perform a VL PD i/s task. Both subjects performed 25
-_ n WIll Ciltracking rums, _± of ....... were recorded in all, over 4000 runs

were performed of which over 700 were recorded and analyzed for des-

cribing function data.

ExperimentalMeasurement of Describing Functions

Y and p2 were calculated for the compensatory tasks while

for the pursuit plus disturbance tasks measurements were made of YI,

Y3, Y4 and p2. These results were averaged across the 6 trained sub-

jects and 6 replications per subject to produce the describing function

results. Fig. 14 gives some typical plots showing + i_ standard de-

viations. Special mention must be made here of the difficulties en-

countered in calculating Y4. The experimental conditions were such

that the IY41 generated by the subjects was generally an order of

magnitude below IY31 and hence the power spectral densities of sig-

nals associated with Y4 were down from one to two orders of magnitude

below those associated with Y3, leading to large data variability.

Due to this excessive variability it was decided that the real and

imaginary parts of Y4 would first be estimated since they depend most

directly upon the measured power spectra. (For all other cases this

intermediate step was not used). The mean values of the real and

imaginary parts were then used to plot IY41 and ZY4. Fig. 15 shows

the real and imaginary parts of Y4 for the M PD K case.

Previous investigators have found that the gain of the

vehicle dynamics has little effect on the overall system performance

in the compensatory tracking situation I. The pilot is found to

adjust his gain to keep the open loop system IYA I gain optimized.

Hence when comparing results from this type of project with those of

other workers it is most convenient to compare plots of Y.A. The

present compensatory results have been compared in this fashion with

Refs. i, 2 and 3. Fig. 16 shows the type of agreement that is found

when the input spectra are of the same shape. The poorest agreement

was achieved in regions where the inputs differed because of the high

frequency shelf. The best agreement was obtained with the VL input

which had no high frequency shelf.

A meaningful measure of the effect of the input spectral

shape on system performance is the change in crossover frequency _c

and phase margin @m with alterations of the input form. Table 2 lists

the measured values of _c, @m and _ie

]
lllp_b U_I_WI_b_/ for theI_¢ 2 (_)d_ is the effective _ "'* _--_"_

o ii

present project. These results do not agree with those of Ref. i

where it was found that _c was independent of input bandwidth for
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ei (or _ie for non-rectangular spectra) <0.8_nn where eco was found

to be 4.8 radians/sec, for CK and 4.4 radiansTsec, for Cl/s. In

fact a rough correlation between _c and the ratio 'Low frequency

content/High frequency content' was found and this parameter is also

included in Table 2. This ratio is calculated by dividing the fre-

quency at which the input spectrum high frequency shelf begins by

the frequency at which it begins to drop off steeply and is roughly

that fraction of the input frequency range occupied by the low fre-

quency part of the spectrum. It appears that as a general rule

(except for C i/s with H input) _c decreases as this fraction de-

creases. In addition the %m'S of Table 2 are much larger than those

reported in Ref. I (where for C i/s with ei going from 1.5 to 4

radians/sec. Cm ranged from 25 ° to 55 ° ) indicating that the present

subjects tended to establish a more stable, sluggish system.

The effect of the observed _c regression upon the perfor-

mance of the system can be seen by comparing the transfer function

relating e to i E/I for the L and VL inputs. Fig. 17 shows a plot

of IE/I| 2 for the C i/s task, the square of the modulus is plotted

because it represents the power transfer from ¢ii to Cee. It is seen

that when _c is large (for VL input) the power transfer tends to
peak at about 9 radians/sec. Hence if an input signal had a substan-

tial amount of power in this region it would make sense from the

standpoint of reducing ¢ee to switch to a lower value of ec" The

presence of the high frequency shelf appears to trigger this _c re-

gression even though with the present L inputs 90.5% of the input

power is contained in the frequency range 0 to 1.41 radians/sec. As

a result, the scores rise when _c regresses because IE/II 2 becomes

greater in the low frequency region where most of the input power
exists.

Pilot models were fitted to the measured data using

Yp(j_) = Kp_J(_w+a)
TLj_ + i i TKJ_ + 1

TIJ_ + 1 (TNlJ_+l)((J_)Z + 2 _ J_ + l) T_J_ + 1
_N _N

Thus it was necessary to choose a value for l0 model parameters to

achieve a simultaneous fit to 25 amplitude and 25 phase points for

each describing function. This was accomplished through the use of

an IBM ll30 digital computer with a Calcomp plotter output. The pro-

cess involved the selection of parameters by the operator followed

by a plotting of the data and the model by the computer. The se-

quence consisted of first achieving a reasonable fit to the amplitude

data and then testing this model against the phase data, making

changes in the parameters as required. The process was repeated until

a good fit* to both amplitude and phase was achieved. The resulting

parameters are listed in Table 3 with no parameters listed for terms

which were not required in a particular case.

* A 'good fit' was considered to be one in which the model reflected

the general trends of the amplitude and phase data, the model being

well within all the + i a bars.
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TABLE 3

PILOT MODEL PARAMETERS

Experimental K
C_nditions P

VL CK Y 114.6

VL PDK YI -]06.0

VL PDK Y2 105.0

VL PDK Y4 1.43

L CK Y 55.7

L PDK YI -48.9

L PDK Y2 48.5

L PDK Y4 0.16

M CK Y 44.6

M PDK YI -39.0

M PDK Y2 36.4

M PDK Y4 i.i0

H CK Y 79.7

H PDK YI -74.2

H PDK Y2 23.8

H PDK Y4 4.40

VL C i/s Y 16.8

VL PD i/s YI -3.22

VL PD i/s Y2 4.85

VL PD i/s Y4 0.69

L C i/s Y 10.3

L PD i/s YI -2.31

L PD i/s Y2 2.18

L PD 1/s Y4 0.38

M C i/s Y 8.75

M PD i/s Y1 -7.43

M PD i/s Y2 6.68

M PD i/s Y4 0.61

H C i/s Y 5.52

H PD i/s YI -3.24

H PD i/s Y2 2.13

H PD i/s Y4 0.73

I/T L I/T I 1/T K I/TK 'I! 1/TN_ _N _N

0.035 0.05 2.70 1.67 - 0.67 12.5 17.0 0.i0

0.030 0.08 2.78 1.67 - 0.63 12.5 15.9 0.i0

0.010 0.08 2.78 1.67 - 0.67 12.5 15.4 0.i0

0.300 0.25 -i.00 - 12.5 - - 3.0 2.0

0.045 0.08 2.70 1.50 0.71 12.5 17.0 0.i0

0.060 0.03 2.70 2.00 - 0.59 12.5 17.0 0.i0

0.075 0.03 2.70 2.18 0.59 12.5 15.9 0.i0

0.300 - -0.i0 2.00 7.15 2.00 2.00 15.1 0.05

0.055 0.04 - 0.83 - - Ii.i 17.5 0.12

0.055 0.06 - 0.91 - - ii.i 17.5. 0.12

0.068 0.08 - 1.11 - ll.1 17.0 0.12

0.400 0.25 -i.00 - 12.5 - - 3.0 2.0

0.060 -0.02 0.20 2.].8 - 0.05 12.5 18.1 0.08

0.070 - 0.20 2.00 - 0.05 12.5 17.5 0.08

0.090 0.04 2.00 5.00 - 0.83 12.5 17.0 0.08

0.350 - -2.00 0.20 7.15 - i0.0 16.7 0.i0

0.087 0.04 3.30 1.82 - - 16.7 14.9 0.07

0.i00 0.15 2.86 1.2!5 0.17 i.ii 17.0 15.4 0.07

0.115 0.06 2.86 1.11 0.25 i.ii 17.0 17.0 0.07

0.020 0.40 1.50 4.00 ....

0.129 0.08 4.00 2.78 - 16.7 17.0 0.07

0.150 -0.04 3.0,9 2.22 0.05 0.20 14.3 17.5 0.07

0.180 -0.04 3.00 2.22 0.05 0.20 14.3 17.5 0.07

0.200 0.20 1.50 i0.00 .....

0.Ii0 0.05 0.8!} 1.21 - - ii.i 16.6 0.i0

0.120 0.25 0.20 1.00 0.17 0.05 ii.i 16.1 0.i0

0.150 0.25 0.20 1.00 0.17 0.05 ll.l 16.1 0.i0

0.266 0.40 1.50 ......

0.ii0 0.05 1.39 3.22 - - ii.i 17.0 0.i0

0.115 0.25 0.63 2.22 - - ii.i 15.9 0.i0

0.145 0.25 0.50 2.50 - - 12.0 15.6 0.09

0.270 0.40 5.0 - 5.0 ....
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With the assumed model form it was possible to fit almost all

the available data well within the + i _ bars. The model fits are

shown in Fig. i4 as solid lines wit_ the Y4 model fitted to the ampli-

tude and phase PlOts and also shown in Fig. 15. An interesting pro-

blem arose when it came to fitting the CK data. It was found that

the values of T which resulted were often lower than the minimum

values predicted from physiological data (0.06 to 0.i0 sec.) I. When

T values in the range 0.06 to 0.i0 seconds were tried it was found

that it was not possible to fit the data as well, and hence the low

values were retained. As a possible explanation of this phenomenon

it is postulated that the subjects were exhibiting an ability to pre-

dict the course of the random input for up to 30 milliseconds into

the future for the lower frequency input cases. The rate control

dynamics case does not allow this to develop because more attention

must be paid to the system output in this more demandingtask.

Detection of Pursuit Behaviour

Plots of describing function amplitude and phase results on

cumulative probability paper indicated that this data could be con-

sidered Gaussian at the 95% confidence level. In order to establish

that the measured Y4's were significantly different from zero a

Student's t test was performed on the data to test the null hypothesis

at the 95% confidence level. The null hypothesis was rejected in

most cases (except at the low measurement frequencies with the VL

input) indicating the presence of pursuit behaviour. Due to the low

amplitude nature of Y4 no significant changes in the overall system

dynamics such as those found in Refs. 2, 4 and 5 were evident.

Although this low amplitude nature precluded any significant

performance differences the shape of the describing functions can

give clues to the processes which take place within the human oper-

ator while tracking with a PD display. Of particular interest is a

comparison of the differences in transport time delays T developed in

the YI and Y2 describing functions. In every case but one (VL, K)

it was found that the Y2 time delay was greater than that of YI, the

difference ranging from AT = 13 to 30 milliseconds. In addition, for

the same cases, an increase in w was observed in going from C to PD

tracking. This increase ranged from 0 to 21milliseconds when com-

paring Y with YI. The nature of the present data analysis did not

allow a check on the statistical significance of these time delay in-

crements, however the consistency of the trend lends confidence to

the belief that the effect is real. Also, it should be noted that

the limited frequency range of the VL input data prevents an accurate
estimate of T for that case since the effects of the e-J uT term in-

crease at the higher measurement frequencies.

In order to gain some insight into a possible source for the

observed time delay increments, consider a system which samples a

time record and then attemDts to reconstruct the signal by a linear

process. One such process _b is based on the assumption that at the
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sampling instants t = nT both the signal r(nT) and its first deriva-

tive rl(nT) are obtained, The output of the process is formed as

o(nT + T)= r(nT) + K_ rl(nT)

for 0 < T < T

and 0 < K < i

The low frequency approximation to the describing function for this

operation is

G(j_) = e-j(I-K)(_T)

for _T << i
2

The presence of such a sampling procedure when the two symbol

pursuit display is used could lead to the observed increases in the

measured time delays with

A
T= 2

I-K

Fig. 18 is a plot of the measured time delay increments for YI and Y2

when compared with Y. These values are comparable to the 30 milli-

second increase observed in Ref. 7 when two simultaneous compensatory

tasks were performed with the displays visually 0.8 ° apart. The

difference in the increments for YI and Y2 reflect a higher sampling

rate being applied to the vehicle response symbol (i.e. a smaller T

in the G(j_) for YI ). Since the form of the data reconstruction uti-

lized by the subjects is not known, no direct link can be made between

the observed time delay increments and the sampling rates adopted.

The data of Fig. 18 indicates that higher sampling rates are adopted

when the input signal bandwidth is increased (except for the H K case).

S__ubSect Learning Effects

This section deals with subjects $2 and $7 who generally ob-

tained the highest scores and $9 and SI0 whose describing functions

were measured as they learned to perform a PD i/s task with VL inputs.

Despite extra training $2 and $7 could not improve their scores,

finding special difficulty with i/s dynamics. Since these subjects

were trying their best to improve their scores it was felt that per-

haps some inability to generate a particular term required in their

describing function accounted for their difficulties. Their measured

describing functions were compared with the average results from the

other subjects. Fig. 14 gives a typical plot. In the case of K

dynamics $2 and S7's describing functions could be obtained by in-

cluding in the averaged subject data a low frequency lead/lag and a
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lag term with its break frequency above the measurement frequency

range. This may be interpreted as their inability to generate the

very low frequency lag/leadwith which the other subjects produce

their high gain at low frequency. Since none of these effects in-

teract with the neuromuscular terms (TNI and _N) it appears that

this part of their system is normal. In the i/s dynamics case a

medium frequency lag (break frequency in the region of i0 radians/

sec.) and a lag with its break frequency above the measurement range

had to be included with the averaged data to produce $2 and S7's

describing functions. The common lag term with the high frequency

break point could represent the fact that these two subjects were

ignoring the higher frequency components in the display.

The series of runs performed by subjects $9 and SI0 (VL, PD,

i/s) was an attempt to determine if the subjects, when presented

with a pursuit plus disturbance display, would at first perform the

task in a compensatory fashion gradually progressing to pursuit type

tracking as they improved. From the measured Y4 data it appeared

that two describing functions were generated by both subjects from

the very beginning of learning, without first going through a stage

of compensatory tracking. See Fig. 19.

Conclusions

i. The present experimental technique allows the simultaneous measure-

ment of two pilot describing functions over the frequency range

of the system inputs.

2. The addition of a low amplitude, high frequency shelf to a low

frequency input spectrum in the case of continuous spectra causes

a gross change in pilot technique.

3. The rules relating the crossover frequency and phase margin of a

piloted system to _ie, the effective input bandwidth, as developed
by previous work do not hold for the inputs of the present experi-

ment. Instead there appears to be a correlation with the fraction

of the input frequency range occupied by the low frequency part of

the spectrum.

4. The small time delays measured for the position control dynamics

cases suggest that the subjects were predicting the future course

of the input to some extent.

5. The pursuit plus disturbance conditions studied produced no improve-

ment in scores over similar compensatory tasks.

6. Two significantly different describing functions were measured for

most cases employing a pursuit plus disturbance display.
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7. Time delay measurements indicate that the subjects adopted a

sampling mode of operation when presented with the pursuit plus

disturbance display. The vehicle output was sampled at a higher

8. Pilot describing functions can be used to pinpoint the cause of

poor man/machine performance.

9. There was no indication of a progression from compensatory to

pursuit tracking as a pursuit plus disturbance task was learned.
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A(s)

e(t)

g(t)

i(t)

J

Kp

m(t)

n(t)

o(t)

p(t)

Ti,TK,T_,T L and

TNI

W C

_ie

_N

Y(s)

NOTATION

- transfer function of the vehicle control dynamics

- error signal representing (i(t) - m(t))

- secondary disturbance signal

- primary input signal or desired system output

- complex number /_

- pilot-model DC gain

- vehicle control dynamics output

- pilot's remnant injected at his output

- pilot's stick output

- that input to the vehicle control dynamics due

to n(t)

- the Laplace transform variable

- time, sec.

- in conjunction with a sampling network T is the

s_pling period, sec.

- time constants in the pilot model

- frequency in radians/second

- the frequency at which the open loop system gain

is unity (crossover frequency)

- highest frequency component in an input signal

with a rectangular power spectrum

-effective input bandwidth =_f_ ¢ii(_) d_ 2

oI_ ¢ii2(_)d_

- the natural frequency of the neuromuscular system

model

- the compensatory pilot describing function
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Yl(S), Y2(s) or

o

T

A_

Cm

¢xy(J_)

@-l(j_) and @2(j_)

_N

X

x 2

x(j_)

-thc pursuit pilot describimg f-_&ctioms

- pilot model low frequency lag-lead parameter

- _ - Cpp(_)

¢oo_-_

- standard deviation

- time delay in seconds

- time delay increment

- 180 ° + system phase angle at _ = _c

- cross-power spectral density of x(t) and y(t)

called the auto-power spectral density if

x(t) = y(t)

- intermediate step in the calculation of purs_±:t

describing functions

- the damping of the neuromuscular system model

- the Laplace transform of x(t)

- the mean square value of x(t)

- the frequency response function corresponding

to X(s)

- the complex conjugate of X(j_)

- the frequency response function corresponding to

the transfer function relating x(t) to y(t)
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APPENDIX A

Model Matchin_ for a Single Input/0utput System

Consider y(t), the output of some system (not necessarily

linear) whose input is x(t). It is desired to find that linear

system L(s) which matches most closely in the RMS sense the ori-

ginal system. Let z(t) be the output of the linear system, therefore

z = x L(s)

L(s) is to be chose., to minimize the RMS value of r(t) = y(t) - z(t).

Since r--T I_=
-_ rr

and ¢ (_) is real positive, then r--Tcan be minimized by
• . rr.

mnmmmz_ng ¢ (_).
rr

NOW Crr(_) = ¢ (_)
YY - Cyx(_) L(_)

(_)L*(j_) + IL(j_)I 2 Cxx(_)- _xy

Let L(j_) be represented in the neighbourhood of the optimum value L (j_)
o

by L(j_) = Lo(J_) + s f(j_)

where s is small and real and f(j_) is an arbitrary complex function.

For a minimum in Crr(_) at s = 0 it is required that

_rr(_) = 0

3 _ s=0

and

Now

_¢rr(_) : -@yx (_)f(J_)-¢xy (_)f*(j_) + _IL(J_)12@xx(_)
De _

But

IL(j_o)I 2 = (Lo(J_o) + sf(j_o))(L_ (j_o) + sf*(j_o))
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Therefore

and

(Lo(J_) + sf (j_))f*(j_) + f(j_) (L*o (j_) + ef*(j_ )

21f(jLo)I 2

Therefore

g=O

and

= -¢yx(_)f(j_)-¢xy(_)f*(j_)

+ (L (j_)f*(j_) + L* (j_)f(j_))¢xx(_)o o

_28g2_rr(_) I = e I ( )1(,f_j__,2_xx_) > 0
_=0

Setting _ ¢

rr(_) I =0
E _=0

results in

Cyx(_)f(j_)+¢xy(_)f*(j_)=(Lo(J_)f*(j_)+L_(J_)f(J_))¢xx (_)

Let f(j_)=m(_)+jn(_), where m(_ and n(_) are two arbitrary real

functions. Substituting for f(J_ results in

Cyx(_)(m(_)+jn(_))+¢xy(m)(m(_)-jn(m))

= {Lo(J_)(m(m)-jn(_))+L _ (jm)(m(m)+jn(_)) } Cxx(_).

Since m(_) and n(_) are arbitrary it follows that

Cyx(_)+¢xy(_) = (Lo(J_)+L*o (J_))¢x x(_)

Cyx(a_)-¢xy (m) = (-Lo(Je)+L*o (J_))¢xx (m)

summing, obtain

Since

@YX (_)=L*o (Jm)¢xx(_)

@yx*(_)=@xy(m)
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Therefore

L (j_)=¢ (_)/¢xx(_).o xy .

Let ro(t) be the remnant r(t) when L(s) = L (s). Now since0

ro = y - x Lo(S) then Cxr (_) = Cxy(_)-Lo(J_)¢xx(_)
o

Substituting Lo(J_) = _xy(_)/¢xx(_)

it follows that ¢ (_)=0.
xr o

_us cyy(_)= ¢ (_) + ILo(j_)12¢ (_)
roT 0

= ®XX(_)Therefore1 < )12 iLo(a )12 2
Cxx(_)¢yy(_)]Lo(J_)l_ ¢_x(_)+¢xx(_)¢roro(_)

<i

the equality holding when Croro(_) : O, that is, when x(t)

and y(t) are completely related by a linear transfer function.

Note that if the process relating x(t) and y(t) cannot be approx-

imated at all by a linear process, or if x(t) and y(t) are two totally

unrelated signals then Lo (j_) =¢xy (_) = O.
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APPENDIX B

Model Matchin_ to a Two input/Single Output System

Consider y(t), and output of some system (not necessarily

linear) whose inputs are x1(t) and x2(t). It is desired to find

two linear systems operating in parallel, Lq(s) and L2(s) , which

match most closely in the RMS sense the original system. Let zl(t)

and z2(t) be the outputs of the two linear systems, such that

zI : XlT,l(S)

Y2 = Z2L2(s)

LI!S) and L2(s) are to be chosen to minimize the RMS value of

r(t) : y(t) - zl(t) - z2(t).

Since r-Z = I_ Crr(_)d_ and Crr(_)
m_

is real and positive, then r-T can be minimized by minimizing Crr(_).

Now

@rr (_) =@yy(_) +ILl(J_)I2¢XlXl (_) + IL2(J_)12@x2x2(_)

-Ll(J_)@YXl(_)-L_(J_)¢xly(_)-L2(J_)@YX2 (_)

Let L.(j_) and L2(J_) be represented in the neighbourhood of their

L2o(optimum values LI (j_) and j_) by
o

LI(J_) = LI (J_) + sfl(j_)
0

L2(J_) = L20(J_) + 6f2(j_)

where s and 6 are small and real, and f_(j_) and f2(j_) are arbitrary

complex functions For a minimum in @ ±(_) at s=6=0• rr
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it is required that

s s=0

6=0

=0

2 (COerr

s 38

Now

Crr(_)

3¢
rr(_)

36 s=0

6=0

=0

3 2 ¢ (_0)
rr

3 g2

E:=O

6=0

_=0

6=0

> 0

_LI(j_)I2

Cxzx1(_)- ¢ (_)fz(j_)- ¢ (_)f_(j_)3 E . yx I xlY '

+ L2(J_)f_(j_)¢XlX2(_) + L_(j_)fl(j_)¢X2Xl(_)

32 ¢rr(_)

3E 36 = f2(ja_)f_(jo_)¢XlX2(_)+f_(j_)fl(jcO)¢X2Xl(CO)

= 2 Re {f2(j_)f_(jtO)¢XlX2(_)}

'3 E z Cxlxl (¢)

IT,I(j_)12
( (jw)+ sfl(j_))(L_0(j_)+-_f_(j_))= LI0
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 ILl(j )I2
_g

_21Ll(J_)12

c 2

= (Llo(Jm) +

= 21fl(j_o) 12

efl(j_))f_(j_) + (L* (j_) + ef_(j_))fl(J_)
Io

Therefore at e=6=O

rr c=O

6=0
= (Llo(J_)f_(j_) + L_o(j_)fl(j_))¢XlXl(m)

YX 1

+ L20(j_)f{(j_)¢xlx2(_) + L*20(J_)fl(Jm)¢_2Xl(_)

and

82 Crr(_)

c2
_=0

_=0

= 21fl(J_)12¢XlXl(_)
> 0

Similarly

3 Crr(_) e=O

_=0

(L20(j_)f_(j_) + L*20(J_)f2(j_ ))@x2x2(_0)

- ¢ (_)f2(j_) - Cx2Y(_)f_(j_)YX 2

+ L1 (j_)f_(j_ (_) + L* (j_)f2 (" (_)0 )¢X2Xl i0 _)¢XlX2

and
s=O

6=0

= 21f2(j_)l 2 ¢x2x2(_) > 0

Now consider
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]2 ]
2 @rr(_) _ 22 Crr(_) 22 @rr(_)

g-O

6=0

:(2Re{f2(J_)f_(j_)¢XlX2(_)})2-4 Ifl(j_)1 2:1f2(j_)12_ (m)¢XlX 1 x2x 2

<0

The last line holds because if xl(t) and x2(t) are not completely
related by a linear transfer function, then (see Appendix A)

._ XlXl ( )_x2x 2

1_ow set a _r(_)

_E _=0

g=0

equal to zero and solve

for LI

o(j_) and _20(j_),

(Lio (Jm.)f_(j_) + L_O( Jm)fl(Jm _¢_i_i(m) -¢_i(_)fl(Jm): -¢XlY(_)f_(J_)

+ L2@(jm)f{(Jm).CXlX2(_) , _*20(J_)fi(J_ )¢x2Xi(m) = 0

and

+Llo(J_)f_(J_)¢X2Xl (_) + L*lo(J_)f2(_m)¢XiX (_) = 0
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Since fl(j_ ) and f (j_) are completely arbitrary and the above two
equations must hol_ for all values of fl(j_ ) and f2(j_ ) it followsthat

and

CXlXl(_)Lzo(J_) +¢xZx2(_)_20(j_)=¢ _)_ly(

CX2Xl(a)L 1 (ja) +¢x2x2(a)L20
0

Solving for L (j_) and L20(J_ ) obtain_0

(j_) = Cx2Y(W)

(j_) = ¢ (_) (_) - @x2Y(_) @ (_)LI 0 xlY Cx2x 2 XlX 2

CXlXl(W)¢x2x2 (_) -@XlX2(_)¢X2Xl (_)

L2o(j_) = ¢ (_)¢ (_) -¢ (_)¢ (_)
x2Y XlX I xlY x2x I

XlX 1 x2x 2 xlx 2 x2x I

provided that Xl(t ) and x2(t ) are not completely related in a linear
fashion.
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9. A Model for HumanControllerRemnant

Willi=m M I Dvienn, _hDIdnn R_rnn and II_vid I Klpinm_n
ww|wn|_n| |u. bvl.vv., v..v.uv.. _ .... p ......... b.., ...........

Bolt Seranek and Newman Inc.

Abstract

A model for human controller remnant is postulated in which

remnant is considered to arise from an equivalent observation

no_se vector whose components are linearly independent white noise

processes. Extensive analysis of data obtained from simple manual

control systems verifies that this model structure holds over a

wide range of input amplitudes and bandwidths, vehicle dynamics,

:and display locations. When the display is viewed foveally, the

component noise processes scale with signal variance. This scale

factor is independent of input parameters and of vehicle dynamics.

INTRODUCTION

Although remnant is an important component of the quasi-linear

representation for the human controller, it is often ignored in the

analysis of manual control systems. The principal reason for this,

we suspect, is the lack of good models for the remnant. Neverthe-

less, it is becoming increasingly clear that we shall have to ac-

quire a quantitative understanding of the processes which underlie

controller remnant in order that we may develop models of control-

ler behavior in multivariable, multidisplay control systems. Even

in simple single-axis control situations the remnant frequently ac-

counts for a significant fraction of the controller's output, some-

times for most of it [Refs. 1,2]. Moreover, recent attempts to de-

velop optimal-theoretic models of controller behavior have required

us to consider some of the sources of controller remnant as inherent

constraints on the human's performance [Ref. 3].

In this paper we develop a theoretical framework which allows

us to predict the spectral characteristics of controller remnant,

and we test these predictions against existing manual control data.

A dominant theme in our model development has been to search for

underlying remnant sources which themselves are processes whose char-

acteristics are independent of control system parameters such as in-

put spectra and vehicle dynamics. Analysis of the experimental data

indicates that we have been largely successful in fulfilling this

objective. This paper summarizes the results of a recent study
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conducted for the National Aeronautics and Space Administration

(NASA) (Contract NAS8-21136), the details of which have been fully

an earlier paper by Levison and Kleinman [Ref. 5].

BACKGROUND

We define human controller remnant in the conventional quasi-

linear context--namely, as the portion of the controller's output

that is not related to the system input by the output/input de-

scribing function [Refs. 1,2]. The rationale for this definition

is that the manual control data against which we shall test the

model have been obtained from experiments designed to minimize

nonlinear and time-varying controller behavior [Refs. 1,6].

The remnant so obtained should therefore reflect primarily the

truly random component of the controller's response. A more gen-
eral definition of remnant is discussed in Ref. 4.

At the time we began our study of controller remnant, the

most significant work in this area had been reported by Eikind

[Ref. 7], McRuer and Krendel [Ref. 8], and McRuer et al. [Ref. 2].

After extensive analysis of their own remnant data, as well as

that of other investigators (including Elkind), McRuer and his

colleagues concluded that: (a) the power-spectral-density func-
tion of the controller's remnant is a smooth function of frequency,

(b) the most stable representation of controller remnant is ob-

tained by referring remnant to an equivalent observation noise
source (i.e., a noise process injected at the controller's input),

and (c) remnant is strongly dependent on the order of the vehicle

dynamics.

Although the conclusions put forth by McRuer et al. are some-

what inconsistent as to whether or not controller remnant is sensi-

tive to other control system parameters, there is other evidence

in the literature to indicate that remnant, when properly normal-

ized, is relatively insensitive to some of these effects. Pew

et al. [Ref. 9] have compared remnant spectra obtained in their

own experiments with those presented by McRuer et al. They found

that the two spectra had an almost identical functional relation-

ship with respect to measurement frequency up to about i0 rad/sec.

Since the input signals used by Pew et al. and McRuer et al. were

grossly different, this finding suggests that the shape of the

remnant spectrum seems to be nearly invariant with respect to the

nature of the input. In addition, Pew et al. reported that rem-

nant was unaffected by control gain and display gain.
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Levison and Elkind [Ref. i] have reported remnant results
which suggest that mean-squared system error is an appropriate
normalization factor for the equivalent observation noise process.
They measured ...._ _±a_.... _'_-_7±u__°_,,_,_,_ p_^T_.............._h_i_ in a series of
single-axis experiments in which the mean-squared input, the input
bandwidth, and the vehicle dynamics were varied. The "fractional

remnant power" was defined as the fraction of system error power

not correlated with input frequencies. They found that the frac-

tional remnant power changed only minimally as either _nput band-

width or mean-squared input was varied. When the vehicle dynamics

were increased from first order to second order, however, a sub-

stantial increase in fractional remnant power resulted. If one in-

terprets the trend of the fractional remnant measure as indicative

of the behavior of the open-loop injected noise normalized with

respect to mean-squared error, then it would appear that a normal-

ization of this type will yield an injected noise process whose

characteristics are relatively invariant, at least with respect to

the characteristics of the forcing function.

The relative invariance of the fractional remnant power with

respect to input power indicates that the absolute amount of rem-

nant power scales along with the other signals circulating through-

out the system. The tendency of the random component of the human's

response to increase with the magnitude of the desired response has

been observed in other investigations not involving manual control

[Refs. i0 -- 12], and it forms the basis of our model of controller

remnant.

THEORETICAL DEVELOPMENT

An Observation Noise Model for Controller Remnant

We consider the characteristics of remnant obtained from man-

ual control situations in which (i) the plant dynamics are linear,

(2) the task requirements are such that the subject apparently de-

votes continuous attention to the tracking task, and, as a further

simplification, (3) the subject manipulates a single control. The

subject's display may present one or more variables, either linearly

correlated or independent, and the subject may derive additional

input variables by performing linear operations on the variables

that are displayed explicitly.

In previous publications we have shown mathematically that a

number of potential remnant sources will have the same effect on

controller remnant and hence can be combined into a single equiva-

lent remnant source without loss of generality [Refs. 4,5]. Rather
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than repeat this analysis here, we shall adopt at the outset the

basic assumption that controller remnant can be represented as a

single (vector) equivalent observation noise process, and we shall

then proceed to verify this model experimentally.

A flow diagram of a single-manipulator manual control system

is given in Fig. i. The information displayed to the controller

(including quantities derived by the controller as well as those

displayed explicitly) is contained in the display vector (x). The

display vector is effectively perturbed by an injected observation

noise vector (r_x) to yield (x') as the total input to the control-

ler. The (x') vector is processed by the controller's describing

function (H_ to yield the control signal (u), a scalar variable.

The primary assumptions underlying the observation noise
model of controller remnant are as follows:

(a) Each component of the injected noise vector is a white noise

process whose power density level is proportional to the quantity

being disturbed. That is,

R = p . _2 (i)
--X --X --X

where P_x is a diagonal matrix of "noise ratios" and _x_2 is a

vector composed of the signal variances.

(b) Each noise process is linearly independent of other component

noise processes, of the state vector, of the controller's output,

and of the system forcing function. (Note that we do not assume

linear independence of the components of the state vector.)

(c) The noise processes are functionally independent of control

system parameters in all respects. These processes are thus as-

sumed to arise from basic physiological noise sources that are

truly internal to the human.

Predictions Based on the Observation Noise Model

We now use the model of observation noise developed in the

preceding section to predict the nature of human controller rem-

nant in simple manual control systems. We specifically analyze

a set of compensatory tracking tasks in which the controller is

provided a single manipulator and is given an explicit display of

only system error (a scalar variable). Note that we cannot clas-

sify this type of control situation as a "single-variable" track-

ing task, because we know on the basis of previous manual control
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studies [Refs. 1,2] and from psychophysical data [Ref. 13] that

the controller can in general extract error rate information as
well. We shall henceforth refer to this class of control systems

as a "single-indicator" system to imply a single physical display

with a single quantity displayed thereon.

An optimal-theoretic model of human controller behavior which

incorporates the concept of a vector observation noise process is

described by Kleinman et al. in a companion paper [Ref. 14]. This

model embodies our most current (and most sophisticated) repre-

sentation of controller behavior, and the correspondence between

model output and controller behavior is in very good agreement.

Nevertheless, in order to demonstrate here the consequences of the

observation noise model with the type of theoretical analysis that

the reader may easily follow, we shall analyze a simplified model

of the human controller. The reader may verify that the predic-

tions yielded by the simplified and optimal-theoretic models con-

cur in most important respects and differ primarily in the fine

structure of the predicted describing function and remnant spec-

trum.

In order to simplify the analysis of the man-vehicle system,

and also to apply necessary constraints on the controller's be-

havior, we assume that the controller's perceptual and response
activities are limited to: (i) the estimation of system error,

(2) estimation of error rate, (3) explicit control of his output

variable, and (4) explicit control of the rate-of-change of his

output variable. In addition, the controller is assumed to gener-

ate an appropraite gain matrix to relate his output to his input
variables.

A model for the human controller which realizes the above

operations with the minimum number of parameters is shown in the

linear flow diagram of Fig. 2. The controller's equalizer is rep-

resented by the set of gains Kx, K_, and K u which relate his com-

manded rate-of-control respectively to error, error rate, and com-

manded control. Neuromuscular dynamics are represented by the ele-

ment Hn(s). Controller remnant sources attributable to true obser-

vation noise, as well as to motor noise and time variations in the

controller's describing function, are subsumed by the white noise

processes R x and R k injected onto error and error rate, respective-
ly. No restriction is placed on the vehicle dynamics V, other

than that the system be controllable when only the error variable

is displayed explicitly.

Before proceeding with an analysis of the remnant spectrum,

we should point out that the model of Fig. 2 is capable of providing
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good approximations to human controller describing functions ob-

tained with simple vehicle dynamics. The describing function,

defined as U(s)/X(s) with R x and R k set to zero, is

Kx+S "Kil

H(S) = [ _+-_ j e-TSHn(S)
(2)

This describing function is similar to the lead-lag crossover
model of McRuer et al. [Ref. 2].

Since the noise sources R x and R_ are assumed to be linearly

independent of each other and of the input i(t), the total con-

trol power spectrum Cuu can be considered as the linear combina-

tion of the power spectra produced by each of these three inputs

acting alone. We find it convenient to combine the responses to

R x and R k into a single remnant spectrum. We thus partition the

control power spectrum into two components:

¢ = ¢ + ¢ (3)
uu uu i uu r

where Cuui is the input-correlated portion of the controller's
response and Cuur is the controller remnant resulting from the
joint effects of the observation noise inputs.

Although our model of controller remnant is based upon a vec-

tor observation noise process, our measurement techniques do not

readily permit us to extract the two vector components R x and R_

from the single spectrum CUUr that is obtained experimentally.
Such a procedure would be equivalent to attempting to determine

two unknowns from a single equation. The best we can do is to re-

flect remnant back to a scalar noise injection process.

Let us then consider an equivalent noise process err x injected
onto the display variable, x, (i.e., the system error). With ref-

erence to the flow diagram of Fig. i, this procedure represents the
addition of a noise term on the variable labelled (x) which is out-

side the collection of elements included in the "model of the human

controller." (Note that this is not necessarily equivalent to set-

ting R_ to zero and considering the single noise source R x.) The

question we ask then, is: What are the characteristics of a scalar

noise process, injected at system error, that we can expect to
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compute if controller remnant is really caused by a vector noise

process with white noise components injected at the variables x'
and _'?

If we solve the flow diagram of Fig. 2 for the relation be-

tween Cuu r and the observation noise components Rx and R_ (with
the input I set to zero), and again for the relation between

¢UUr and the equivalent scalar process _rrx, we find that the sca-
lar and vector observation noise processes are related as follows:

K2R +K_R. Rx+T2R _
¢ = xx xx = (4)
rr x K2+_2K_ l+T2m 2 '

x X

where T is a time constant equal to K_/K x. Thus, controller rem-

nant reflected to an equivalent scalar noise on system error should

appear as a first-order noise process.

Letting

R '= 02P
x x x

R. = o_P. (5)
x XX

where Px and P_ represent the noise ratios assQciated with esti-
mation of error and error rate, respectively, and normalizing with

respect to the variance of the system error, we obtain

¢, _ ¢ /_
rr x rr x

Px+T2 ((;2 2

I+T2_ 2

(6)

Inspection of Eq. 6 allows us to predict some of the charac-
teristics of the normalized observation noise without having to

specify the vehicle dynamics. If the assumptions stated above are

correct, then we should find experimentally that:

(a) The shape of the normalized observation noise spectrum is

first order, regardless of input spectral characteristics and the

vehicle dynamics.
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(b) Variations in vehicle dynamics will affect the break-frequency

of this noise process because of the adaptive changes that occur in

the controller's describing function (hence, in the ratio K_/Kx).

Changes in dynamics may also influence the level of the observation
2 2

noise through changes in the ratios _/_x"

(c) Mean-squared value of the input affects neither the magni-

tude nor spectral shape of the normalized observation noise so long

as the man-vehicle system operates in a linear range.

(d) Changes in the shape of the input spectrum (specifically,

changes in input bandwidth) can affect the magnitude of the normal-
. 2 2

ized observation noise only by varying the ratmo q_/_x" Input band-
width should not have a significant effect on the break-frequency of

the noise _spectrum because of the relative insensitivity of the con-

troller's describing function to input parameters, provided that the

input bandwidth is sufficiently below the gain-crossover frequency
[Ref. 2].

Additional predictions on the behavior of the normalized obser-

vation noise spectrum can be obtained if we specify the vehicle dy-

namics and draw upon our knowledge of how human controllers respond

in specific control situations. We know, for example, that when th_

vehicle dynamics are a pure gain, the controller's describing func-

tion will approximate that of a single integrator plus time delay.

Equation 2 indicates that the controller should therefore set his

lead term, K_, near zero. The normalized observation noise spectrul

should then appear approximately as

¢' - P (7)
rr x

x

Thus, when the dynamics are pure gain, the normalized observation

noise (reflected on system error) should be equivalent to the noise

ratio associated with estimation of system error (i.e., estima-

tion of the position of the display indicator).

When the vehicle dynamics are K/s 2, on the other hand, the

controller acts primarily as a differentiator. In this situation,

he must de-emphasize the position term, Kx, relative to the lead

term. The time constant T thus approaches infinity, and the nor-

malized observation noise is approximately

,_, - _: (8)
rr _ 2

X
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Our measurements are more readily interpreted if, in this case,

we reflect remnant to a noise injected on error rate, and accord-
ingly normalize with respect to the variance of error rate. We
then obtain

[°2]¢, = ¢ /_.2 = w2 _%x ¢, - P. (9)

rrx x• rr_ x rr x

Now we see that providing the controller with K/s 2 dynamics should
allow us to measure directly the noise ratio associated with
rate estimation.

Vehicle dynamics of K/s provide an intermediate measurement

situation. Since the controller's task is to act essentially as

a gain, the ratio Kk/Kx is not constrained to be either very large

or very small, but only to be approximately equal to his lag time

constant i/Ku. In this case we should expect in general to com-

! pute a first-order observation noise process on error as indicated

by Eq. 6.

EXPERIMENTAL VALIDATION

Analysis Techniques

In order to provide a set of datum points against which to

test our model of controller remnant, we have computed observation

noise spectra from data obtained from a variety of single-indicator,

single-control manual tracking experiments. These experiments are

described in detail in Refs. I and 6. Vehicle dynamics, input cut-

off frequency, and total input power, among other parameters, served

as the experimental variables. The vehicle dynamics were either K,

K/s, or K/s 2 The inputs were designed to simulate rectangular noise

spectra augmented by a low-power, high-frequency shelf, and were ap-

plied as a disturbance to the displayed error. Input cutoff fre-

quencies investigated were 0.5, 1.0, and 2.0 rad/sec. For most ex-

periments, the input power was adjusted to yield a tracking error

power of 0.2 cm 2 display deflection. (i cm corresponded to about

0.8 degrees deflection of visual arc.)

The input signals were constructed from sinusoidal components

to allow us to take advantage of Fourier transform techniques. Use
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of sinusoidai inputs also faciiitab_d the _eparation of re_ant-

induced signals from the linear response to the input, since sig-

nal power at other than input frequencies could arise only from

controller remnant (except for a small contribution due to imper-

fect generation of the input and irreducible system noise).

In order to compute observation noise spectra from signals

that are directly measurable, we make the following assumptions:

(a) The equivalent scalar observation noise signal r(t) is as-

sumed to be linearly uncorrelated with the input signal i(t).

(b) The remnant-induced power varies continuously with frequency

in the vicinity of input frequencies.

(c) Signal power occurring at input frequencies arises almost

entirely from the linear portion of the system response and only

negligibly from controller remnant.

Because of the way in which we have defined remnant, we are

able to compute only the component of r(t) that is linearly uncor-

related with the input. Although certain models of the underlying

sources of remnant predict that r(t) will in fact have a component

that is correlated with i(t), this component appears to be small

compared to the uncorrelated component [Ref. 4]. McRuer et al.

[Ref. 2] have shown that the remnant appears to vary smoothly

through the input frequencies. The continuity of the remnant

spectrum allows us to test the validity of the third assumption

in a specific measurement situation. For example, if the control

(or error) power measured at a specific input frequency is much

greater than the remnant-induced power measured at neighboring

frequencies, the measurement at the input frequency may be attri-

buted to the input-correlated response of the system. If the

remnant-induced power is relatively large, on the other hand, mea-

surements at input frequencies can be expected to include the ef-

fects of remnant.

Given that the above assumptions are valid at a particular

frequency of interest, the closed-loop control and error spectra

may be separated into the following independent input-related and

remnant-related components:

HI2Cuu i i_ _ii (10a)
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= (lOb)
Cuu r _ err x

=l112
Cxx i _ ¢ii (lOc)

= I Hv 2 (lOd)
Cxx r _ err x

where these equations apply for an input injected onto the error
directly.

Solution of Eqs. 10a and 10b yields for the observation

noise spectrum:

¢
UU

_ r
_rr ¢ " ¢ii (11)

X 'UU.
i

Since measurements of eli and Cuu i can be obtained only at input
frequencies, the observation noise spectrum obtained in this man-

ner can be specified only at those frequencies. (Although the

closed-loop remnant spectrum Cuu r cannot be directly measured at
input frequencies, a reasonable approximation can be obtained

from an average of remnant measurements taken at neighboring fre-

quencies.) At frequencies sufficiently below gain-crossover (i.e.,

where IHVI>>I), the observation noise spectrum is approximately

identical to the error spectrum at non-input frequencies. The

computation of the scalar observational noise spectrum depends

neither upon the vehicle dynamics nor upon the controller's de-

scribing function and can theoretically be obtained from a single-

variable control situation of arbitrary complexity. The interpre-

tation of such a measurement may, however, depend very strongly

upon the nature of the control situation, as we have already shown.

Normalized Observation Noise Spectra for Foveal Viewing

Experimental data have been analyzed to test some of the pre-

dictions based on the observation noise model of controller remnant.

Specifically, we examine the relationship between the normalized
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observation noise spectrum and (a) mean-squared input, (b) vehicle

dynamics, (c) input bandwidth, and (d) the point at which the in-

put is applied to the system. All the data presented in this sec-

tion pertain to foveal viewing of the display.

Effects of mean-squared input

We have predicted that the normalized observation noise will

be invariant with respect to mean-squared input. This prediction

is a necessary consequence of our basic assumptions that: (a) con-

troller remnant arises from noise sources that scale with signal

variance and that (b) the man-vehicle system is otherwise linear.

Figure 3 shows that the observation noise spectrum, normalized

with respect to mean-squared error, was essentially invariant over

a 9:1 variation in input power. These normalized spectra were ob-

tained for mean-squared input levels of 2.6 and 23 deg 2 equivalent

display deflection. Vehicle dynamics were K/s, and the input cut-

off frequency was 0.5 rad/sec. These measurements, coupled with

the fact that mean-squared error was proportional to mean-squared

input (see Ref. i), validate the above assumptions.

Effect of vehicle dynamics

Our model of controller remnant predicts that the observation

noise spectrum, reflected onto system error, will in general re-

semble a first-order noise process when the controller is provided

with a display of system error only. For the special cases in

which the vehicle dynamics are K or K/s 2 however, the observation

noise shoula appear white, so long as the noise is reflected to

the signal in which the controller is primarily interested (error

position when the dynamics are K, error rate for K/s2). The situa-

tion is less constrained when the dynamics are K/s, and in this

case the simple model analyzed in this paper does not allow us to

predict the location of the break frequency of the first-order pro-
cess. *

Normalized observation noise spectra obtained from a set of

trackin_ experiments in which the vehicle dynamics were K, K/s,

and K/s t are shown in Fig. 4. The noise processes corresponding

*The optimal-theoretic model discussed in Ref. 14, on the other

hand, allows us to predict the spectral characteristics of the

scalar observation noise process in detail.
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to K and X/s dynamics have been reflected to system error and

normalized with respect to mean-squared error; the K/s z remnant

data have been reflected to error rate and normalized accordingly.

Figure 4 verifies our predictions concerning the frequency depen-

dencies of the spectra: observation noise spectra obtained from

K and K/s z data are essentially white, and the spectrum correspond-

ing to K/s dynamics is first order. We also find an unexpected

consistency in the results: the power density levels of the two

white noise spectra are identical to within i dB (which is approxi-

mately our measurement error) at 0.01 units of normalized power per
rad/s e c.

We can perform at least one check on the internal consistency

of the observation noise spectra obtained with K, K/s and K/s z dy-

namics. If we interpret the normalized spectra obtained with dy-
namics of K and K/s z as direct measures of the noise ratios as-

sociated with estimation of error and error rate, respectively,

then we see from Eq. 6 that the spectrum obtained with K/s dynam-

ics s.hould be related to these measures by

2 2 (2)
¢(0)+T2 (O_/°x) err.

_(i) = rrx x (12)
rr

x I+T z _2

where _(0) _(i) and _(2)
rrx, rrx, rr" represent the normalized observation

noise spectra obtained wi_h vehicle dynamics of K, K/s, and X/s 2,

respectively. We computed a _/_ ratio of 27 from K/s data, and

a time constant T=0.29 sec was_ob_ained by best-fittlng the cor-

responding observation noise spectrum by a first-order noise pro-
cess. These values were combined with the measured values of

¢(0) _ _(2) _rrx ana _rr_ to yield a "theoretical" observation noise spectrum
for-K/s dynamics as given by Eq. 12. Figure 5 shows that the theo-

retical and measured observation noise spectra agree to within i dB

at most measurement frequencies. The experimental measurements and

the model of controller remnant presented in this section are thus

seen to be internally consistent.

Effect of input bandwidth

We have concluded from Eq. 6 that input bandwidth will not af-

fect the shape of the observation noise spectrum, and it will affec

the level of the normalized spectrum only to the extent that the

ratio oi/oxz 2 is varied. To test this prediction, we have analyzed
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tracking results obtained with vehicle dynamics of K/s and input
Z 2

bandwidths of 0.5, i, and 2 rad/sec. The a±/_ x ratios that we

measured varied only minimally with bandwidth, ranging from 29

to 40 (a span of only 1.4 dB). Accordingly, we would not expect

to see an appreciable variation in the level of the observation

noise spectrum. Our expectations are confirmed by the experimen-

tal results. Figure 6 shows that there were no consistent dif-

ferences among the normalized observation noise spectra corre-

sponding to the three input bandwidths.

Effect of input injection point

From our model of controller remnant we predict that the ob-

servation noise spectrum will not depend on the spectrum of the

displayed error signal, other than as the spectral shape effects

the ratio _/o_. To test this prediction, we have compared the

observation noise spectrum obtained from the command-input system

diagrammed in Fig. i with the spectrum obtained from a system in

which the input has been injected in parallel with the control

signal (i.e., a disturbance applied to the vehicle rather than to

the display). The vehicle dynamics were K/s in both experiments.

The rectangular input spectrum used in the input-command system

had a cutoff frequency of 2 rad/sec; a simulated first-order noise

process having a break frequency of 2 rad/sec was employed in the

vehicle-disturbance experiment.

Figure 7 shows that shapes of the input-correlated portions

of the two error spectra differed with the system configuration

(although the remnant-related portions of the two spectra were

quite similar). These spectra have been normalized with respect

to error variance to minimize differences of scale. The input-

correlated portion was approximately a sawtooth function of fre-

quency when the command-input configuration was employed, whereas
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it was a much smoother function of frequency when the input was
2

injected as a vehicle disturbance. Nevertheless, since the o_/o x

ratios were nearly identical for the two systems (29 for the

command-input versus 27 for the vehicle-disturbance configuration),

we would predict virtually identical normalized observation noise

spectra.

Figure 8 shows that the normalized observation noise spectra

computed from the experimental data were, in fact_ nearly identi-

cal, differing by less than i dB at most measurement frequencies.
We thus have an additional example to indicate that controller rem-

nant can be referred to a noise process whose characteristics are

relatively independent of control system parameters.

Observation Noise Spectra Associated with Peripheral Viewing

Peripheral observation noise measurements differ in a number

of important respects from foveal measurements. Since peripheral

vision is known to degrade as the peripheral angle of view is in-

creased, we cannot expect that peripheral observation noise will

be entirely independent of display parameters. In addition, we

find that the injected observation noise does not simply scale

with signal variance when the display is viewed peripherally.

Finally, the interpretation of the peripheral results are to some

extent less ambiguous than the foveal results. Whereas we cannot

pinpoint the true source of the random process responsible for

controller remnant during foveal viewing of the display, a compar-

ison of the equivalent observation noise spectra associated with

peripheral and foveal viewing should allow us to investigate di-

rectly the nature of true observation noise.

We have some evidence to show that the analytical form of the

observation noise spectrum is unaffected by placement of the dis-

play in the periphery. Normalized observation noise spectra for

peripheral and foveal viewing are compared in Fig. 9. Placement

of the display in the periphery increased the level of the normal-

ized observation noise spectra for both K and K/s 2 dynamics. We

interpret this result as indicating an increase in the observation
noise levels associated with estimation of error and error rate.

The peripheral noise spectra may be approximated by white noise

spectra, although the match is not nearly so good as it was for

the spectra corresponding to foveal viewing. The average differ-

ences between the peripheral and foveal normalized observation

noise spectra were 6.9 dB for K dynamics and 4.5 dB for K/s 2 dynam-

ics, which result suggests that the controller's estimation of

error rate is degraded less in the periphery than his estimation
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of error position. (The superiority of rate over position per-

ception in the periphery is well known to display designers, but

this is the first attempt we know of to quantify this difference

in a manner that can be directly incorporated into a model of

human controller behavior.)

Normalized observation noise spectra obtained for K/s dynam-

ics are shown in Fig. i0. The four viewing conditions represented

are foveal, a 16 ° viewing angle with reference extrapolation pos-

sible, and 16 ° and 22 ° viewing angles for which no reference ex-

trapolation was possible.* Although the normalized spectra coin-

cide at frequencies above 2 rad/sec, the spectra differ noticeably

at lower frequencies. (If we were not to normalize with respect

to error Variance, the differences would be considerably enhanced.)

The relation between the low-frequency behavior of these spectra

and display conditions is consistent with prior expectations --

namely, the lowest level of normalized observation noise is asso-

ciated with the best viewing condition (foveal) and the highest

levels are associated with the most difficult viewing conditions

(peripheral viewing without reference extrapolation).

We note that for all three sets of dynamics investigated, the

peripheral observation noise spectrum is of the same analytical

form as the corresponding foveal noise spectrum. We therefore con-

clude that controller remnant arising under peripheral viewing con-

ditions, as well as under foveal conditions, can be accounted for

by a vector observation noise process whose components are white

noise processes. In the case of peripheral viewing, the power

density levels will vary with display conditions.

Perhaps the most important difference between foveal and pe-

ripheral observation noise processes is that the latter do not

simply scale with signal variance. Figure ii shows the effect of

input variance on the observation noise spectrum (not normalized)

when the display is viewed foveally and when it is viewed periph-

erally at 22 ° without reference extrapolation. Since the two in-

put variances differ by a factor of 4, we would predict from the

*By manipulation of the relation between direction of indicator

motion and placement of the display, we were able to provide view-

ing conditions in which the subject either could or could not

mentally extrapolate a zero reference from his fixation point to

the peripheral display. Since the stationary baseline presented

on the peripheral display tended to disappear after a few seconds,

tracking performance was significantly enhanced by the subject's

ability to make this extrapolation. A more complete description

of the experimental conditions may be found in Ref. 15.
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model of Eq. 4 that the spectrum corresponding to the larger input
wlll be 6 dB greater than the spectrum corresponding to the small-

er input. Figure iia shows that the foveal spectra bear out this

prediction. On the other hand, Fig. llb shows that input power
has no consistent effect on the peripheral observation noise spec-

trum. It thus appears that the effect of placing a display in the
periphery is to introduce an observation noise component which is

relatively invariant with respect to signal power.

SUMMARY AND DISCUSSION

We have postulated a model for controller remnant in which
remnant is considered to arise from an equivalent observation

noise vector whose components are linearly independent white noise
processes. Extensive analysis of data obtained from simple manual

control systems verifies that the model structure is correct and
is independent of input amplitude and spectral shape, vehicle dy-

namics, and display location. When the display is viewed foveally,

the component noise processes scale with signal variance. This
scale factor, or "noise ratio," is also independent of input

parameters and of vehicle dynamics.

We are especially intrigued by the discovery that the normal-
ized injected noise spectra measured from the K and K/s 2 data turn

out to be white noise spectra having identical power density levels
of -20 dB (i.e., 0.01 units of normalized power per rad/sec). Al-

though the -20 dB level does not appear to be of particular sig-
nificance, the fact that the two spectra are identical implies, at

least from one mathematical point of view, that the noise constants
associated with the estimation of error and error rate are quanti-

tatively the same. If we extrapolate this result to conclude that
a -20 dB noise constant is associated with each variable that the

controller obtains from his display, then we find that we can pre-

dict the controller remnant spectrum in a general multivariable
control situation with a model that requires knowledge of only a

8ingle parameter (provided all quantities displayed to the control-
ler can be viewed foveally). Further experimentation will be nec-

essary to determine the extent to which such an extrapolation is

justified. Nevertheless, we have shown that a single-parameter
model is adequate to describe remnant in the wide variety of single-
indicator control situations that we have analyzed.

We have not attempted to pinpoint the physiological sources of

remnant in this paper, because our measurements do not allow us to
distinguish among them. The "equivalent observation noise" proces-

ses that we discuss may include such effects as (a) true observation
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noise, (b) motor noise, (c) random variations in controller gain

and time delay, and (d) effects of a periodic signal sampling by
the human. Because of the uniform noise constant of about 0.01

that is found for a wide variety of foveal tracking tasks, we

suspect that foveal remnant arises from a central processing type
of disturbance that is common to all tracking tasks (such as a

time-variational disturbance on controller gain or time delay).

The notion that randomness is generated within the central pro-

cessor, in fact, forms the foundation of a model for task inter-

ference [Ref. 16].

Unlike the observation noise spectrum measured when the dis-

play is viewed foveally, observation noise spectra associated with

peripheral viewing tend to be relatively invariant to signal vari-

ance. This behavior suggests that the peripheral observation noise

vector might be reasonably modelled as

R = A + p _2 (13)
--X --X --X

where P is the foveal noise ratio of roughly 0.01 units of nor-

malized power per rad/sec, and A x is a white noise vector whose

components are related to display parameters. We do not have

enough data to indicate whether or not A_x is strongly dependent on

signal parameters. The data we have analyzed to date indicate that

it is not. However, it should be noted that all of our experiments

have yielded relatively wide-band error signals (a necessary conse-

quence of using simple control dynamics and a wide-band display).

Because we know that slow-moving signals are hard to resolve in the

periphery, we suspect that peripheral observation noise would be

increased if the signal bandwidth were significantly reduced by,

say, appreciable display dynamics. Additional experimentation will

be needed to develop a reliable model of controller remnant for

peripheral viewing conditions.

Because the noise processes associated with peripheral view-

ing appear to be the ones that can most easily be manipulated by

control system design, a study of these processes may be the most

relevant area of investigation in any further studies of control-

ler remnant. We conclude, on the basis of the unexpectedly con-

sistent results obtained from the foveal tracking data, that the

sources of foveal remnant are most likely to represent irreducible

noise processes that are inherent to the controller. On the other

hand, our experiments on peripheral tracking with and without the

facility for zero reference extrapolation show that peripheral ob-

servation noise spectra can be significantly affected by the design
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of the displays. The observation noise spectrum, therefore,
should prove to be a useful measure of the true observational

aharacteristics of a display, and means for reducing this noise

process should result in superior displays for muitidisplay con-
trol situations.
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Discussion of Paper 9: A Model for HumanController Remnant

by Levison, Baron, and Kleinman

E. R. F. W. Crossman

The authors' introduction of multiplicative "observation noise"

to account for remnant data may rank as the rediscovery of the decade,

perhaps the century. If, as I surmise, the noise process in question is

simply the human observer's error of estimating physical stimulus mag-

nitude, the earliest experimental demonstration that it is proportional to

stimulus was given by E. H. Weber in 1834 (1), and earlier intimations

are found in the literature as far back as 1768 (Bernoulli; see Ref. 2).

Extensive discussion of the topic by G. T. Fechner in the 1860's (3) led

to the earliest mathematical model in experimental psychology, the

Weber-Fechner law, which may be stated in the following form:

where

=_ (log2- log o)

S = the internal representation or sensation corresponding to

a given one-dimensional signal of physical magnitude s

k = the Weber constant

0 = an absolute threshold parameter.

While subject to extensive qualification, notably by S. S. Stevens (4), this

law has never been disproved, and remains a basic law of psychophysicso

Weber's experiments estimated the (so-called) lust noticeable

difference or differential stimulus threshold As by the method of limits and

Feehner assumed that As could be assumed to correspond to a constant

increment of sensation AS. The method of limits yields a Gaussian-integral

threshold function, rather than a distribution of S for constant s. However

later experiments using the alternative psychophysical method of average

error show that with s held constant, samples of s are normally distributed

with standard deviation (noise amplitude) _s proportional to s.
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An idealized noise spectrum for constant or slowly varying s may be
obtainedby assuming a constant sampling interval of 0.1 sec. (5), and ideal
reconstruction with Nyquist frequency W _ 5 Hz. The spectrum thenhas
constant power per unit bandwidth in the range (0, 5) Hz. While the actual
perceptual process cannot conform exactly to this model, we may reasonably
expect a near-flat spectrum out to a frequency high compared to neuro-
muscular cutoff.

Typical values for the Weber fraction As/s are on the order of 0.07,

corresponding to as/S _- 0.1. Noise power N s per unit bandwidth is then
obtained directly

2 Wc_2

Ns s- _ 2. O.Ol --2s

W

-2
Normalizing to mean signal level s , we estimate log (Ns) _ -17 db., in
reasonable agreement with the authors' empirical results. To obtain a

more exact prediction we would, of course, require empirical estimates of

the differential threshold As obtained from the actual display configuration
used in the tracking experiment.

With the advent of information theory, error in human supra-threshold

absolute judgments of stimulus magnitude were later expressed in terms of

information-transfer rates. The display configuration used in the pioneer

work of Hake and Garner on scale-reading (6, 7) corresponds reasonably
closely to estimation of scalar error magnitude on a CR tubeface. Infor-

mation rates around 3.2 bits were reported, again corresponding to an

internal noise power N s of about 1% of signal, or -17 db per unit band-
width.

It may also be worth drawing attention to the somewhat explicit

formulation of a "motor noise" hypothesis given in the classical paper of

Fitts (8), and further discussed by myself in connection with pursuit tracking
(9). According to Fitts, motor noise, observable as a distribution of motion

endpoints, is proportional :_ motion amplitude in a fashion analogous to

Weber's law. He also showed that it is a negative exponential function of

motion duration with a maximum value around am= 0.05 (duration < 0.25 sec.).

This indicates feasibility for the human operator of reducing the external

effect of internal noise by time-domain smoothing, or spectral filtering.

The externally observed noise power should therefore be a strong function of
required output bandwidth.
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In sum, I feel that there are a number of points at which the authors'
striking new results canbe tied in quanLiLatively.....1-wL_..clas_ma! data. The
relationships would be well worth further exploration.
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Reply to ProfessorCrossman'sDiscussion

William H. Levison

My co-authors and I thank Professor Crossman for his discussion relating

our observation noise model of controller remnant to earlier psychophysical

results. We do not, however, obtain the same numerical results as the dis-

cussant when we analyze his model in a manner consistent with the way we

have analyzed our own data. To illustrate, let us adopt Crossman's hypotheses

that: (a) the standard deviation of the estimation error [ Js ] is about one-
tenth the stimulus magnitude is ] and (b) that the underlying noise process

may be considered to have a flat spectrum from 0 to 5 Hz (0 to 107r rad/sec).

2/g2 is then0.01. If, we let N s repre-The measured noise/signal ratio ¢r s
sent the amount of normalized noise power per rad/sec (as we have done in

our paper), we find that

2 -2 -2
a s = 10_ N ss =.01s

and

.01 - --35 dB
Ns = I0--_-

as contrasted with the normalized observation noise level of -20 dB reported

in our paper.

One should be cautious, however, when drawing comparisons between the

noise component of the human's response and the level of an equivalent obser-

vation noise process because of the potential signal processing that takes

between observation and response. As Professor Crossman notes, it is fea-

sible for the human operator to reduce the external effect of internal noise by

appropriate spectral filtering. In paper IH-17 of this Special Report we present

a model of the human controller which, in fact, includes a Kalman filter to

provide the optimum spectral filtering. We agree wholeheartedly that it would

be worthwhile to tie our results quantitatively with the classical data, but we

suspect that some rather sophisticated models of human performance will
be needed.
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10. An Investigation into SomeAspects of the HumanOperator

DescribingFunctionWhile Controllinga SingleDegree of Freedom

M. Gordon-Smith

University of Toronto Institute

for Aerospace Studies

ABSTRACT

A single axis, random forcing function, compensatory display tracking task
has been used to investigate the effect of the manipulator on the remnant

portion of the human operator's output. Pressure and free-moving manipula-

tors were used with rate control vehicle dynamics and filtered white noise

forcing functions similar in spectral shape to the STI inputs. Data is presented

which shows the effect of the manipulator and forcing function on the system

performance, the human operator describing function and the remnant.

I. INTRODUCTION

The human operator is an important and useful element in many control

system situations, but certain aspects of his performance are still relatively

ill-defined. The inclusion of the human operator in the analytical design of

man-machine systems requires a mathematical description of the operator's

performance. The human is recognized as being in general a nonlinear,

time-varying element, but under conditions which minimize the major non-

linearities the human operator can be adequately represented by the combina-

tion of a quasi-linear describing function model and what is known as the

remnant term. The remnant term contains all of the operator's response
which is not described by the linear model.

This form of representation has gained wide acceptance and the characteris-

tics of the describing function have been well documented, of which Refs. 3 and

4 are good examples, and there have been several applications to the design

of systems (Ref. 8, 11). Associated with the describing function model are

a set of Parameter Adjustment Rules which have been developed from a con-

siderable amount of experimental data (Ref. 3) to predict the form of the

model required depending on the particular circumstances of the control
situation.

There is developing interest in attempting to complete the description of the
human operator's performance by the addition of a remnant model. This
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situatio- has arisen becauseof the recent efforts to obtain human response
data in circumstances where the external inputs to the system were very
small and the main system forcing function was the remnant itself (Ref. 17),
or where the remnant contributed disturbances to the system in frequency
ranges which excited undesirable system responses (Ref. 8). The remnant
data hasbeentoo scarce for the development of a model and a set of adjust-
ment rules similar to that available for the describing function.

The objective of this study has beento add to the remnant database in the
random-input compensatory tracking task situation by investigating the effect
of the manipulator andforcing function bandwidth on the remnant. The purpose
of this paper is to describe briefly the experimental program carried out in
the course of this study and to summarize the major results. In the interests
of brevity detailed analysis has beenkept to a minimum and only a represen-
tative selection of results are given. Someof the results are very recent
andthe analysis is not yet complete; a fuller discussion will appear in Ref. 1.

II. THEORETICAL CONSIDERATIONS

2.1 Random-Input Describing Function Model

In the closed-loop compensatory tracking task shown in block diagram

form in Fig. I the human operator is represented by the general form of

the model Yp (jc0) and the additive remnant nc(t ). The system forcing func-
tion is i (t) and the controlled element dynamics of rate control are repre-

sented by Yc = Kc/(Jw)"

The most detailed model form is that of the "precision model" of Ref. 3

which consists in the following terms: 1) apure gain, 2) a transport time

delay which represents the neural conduction and processing delays in the

operator, 3) the adaptive dynamics consisting in a lead/lag term, which

represents the operator's ability to change his type of response depending

on the control situation, 4) the neuromuscular system dynamics, consisting

in a lead/lag term at very low frequencies and a third order system at high

frequencies. The parameters of the neuromuscular system show adaptive

behavior to a certain extent, (Ref. 9), and 5) an "indifference threshold"

describing function which represents the tendency of the operator to ignore

signals of low amplitude.

Application of the adjustment rules to this particular control situation

results in the reduction of the adaptive dynamics to a unity gain term. Since
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the error signal being presented to the operator is assumedlarge andthe oper-
ator is assumedto be well motivated, the indifference threshold can also be
represented by unity gain. The precision model canthen be simplified to the
J.UII.UW' Lll_ J-U_. _±l.

Neuromuscular System

2.2 Remnant Sources and Models

In Fig. 1 the remnant is represented as an open-loop signal injected at the

operator's output. It can be shown that the use of the describing function

model results in the remnant being linearly uncorrelated with the system

forcing function. There may be some causal relationship between the two,

involving some form of non-linear correlation, but this is beyond the scope

of this study.

The remnant is accepted as coming from several sources of var_ng

importance. It is possible to infer the sources and their relative importance

from the characteristics of the operator's response. The three major sources

are:

1) Nonlinear behavior: the indifference and physiological thresholds,

output amplitude and rate limiting, and bi-modal pulsing responses are
included in this source.

2) Noise injection: this can occur at any of the sensing, computational or

actuation elements of the human operator. This source will include "observa-

tion noise" in the visual process and neuromuscular system noise.

3) Time-varying behavior: the parameters of the describing function

model are defined only as averages over the measurement period and
variations in their values will be a source of remnant.

At the initiation of this study the remnant data was very sparse (Ref. 10,

20). However, in the interval a considerable body of data has been published,

(Ref. 3, 7, 8, 14, 18, 19, 20). A very brief summary of the present status

of the remnant data follows.

In general the remnant power spectrum has been shown to be continuous with

no spectral peaks due to periodicities. The remnant increases with controlled
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element gain and controlled element order. There i_ some dependcnce on

forcing function bandwidth and the manipulator. Nonlinear behavior in the

form of pulsing has been observed for high order controlled elements and

iarge ........ _-_ _.... +:,_n_ Thi,_ is interpreted as an attempt toDanOwLUbll _V_LI_ 5 _,_ .... _ ..... .

generate the lead necessary to maintain system stability. Under certain
conditions the time record of the injected remnant has been shown to have a

normal distribution. The conclusions concerning the effects of the manipula-

tor and the normality of the remnant were obtained from very limited amounts

of data.

The evidence points towards the existence in the human operator of a

relatively stable source of remnant. Nonlinear behavior can be virtually

eliminated while the other two sources will be indistinguishable, though

time-variability appears to be the major contributor (Ref. 19).

Attempts at modelling the remnant have been confined to representing the

open-loop injected remnant as filtered white noise, the parameters of the

filters being adjusted to obtain reasonable fits to the measured data (Ref. 8,

18, 21). A different approach treats the remnant as a purely multiplicative

source acting on the error signal to produce an equivalent observation noise

(Ref. 20).

2.3 Neuromuscular System Dynamics

The performance of the human operator is critically dependent on the

restraints imposed by the dynamics of the limb-manipulator combination.

In order to be able to predict the effect of these restraints and the effect of

various types of manipulator nonlinearities, such as hysteresis and backlash,

it is necessary to develop models of the neuromuscular system.

As was the case with the remnant, at the beginning of this study there was

little reliable data on the effects of the manipulator on the human operator's

performance. Eventually, data became available (Ref. 5, 6) which covered

the range of pressure, spring-restrained, free-moving and high inertia

manipulators. The results of interest were that the pressure manipulator

produced lower RMS errors and smaller high frequency phase lags, and

the low frequency phase lags were in general about the same or slightly

larger than those for the free-moving manipulator. The spring-restrained

manipulator generally gave intermediate results. For difficult tracking tasks

(Ref. 7) the effects of the manipulator were less marked and the free-moving

manipulator tended to produce less linear behavior than the pressure manipu-

lator. An increase in forcing function bandwidth showed a reduction in high
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frequency phaselags, and this was attributed to input-adaptive changesin the
neuromuscular system dynamics.

The physiological data showedthat the neuromuscular system consisted in
the actuating muscles and a variety of position andforce feedbackloops. At
least two separate inputs to the neuromuscular system from the central
nervous system were observed. A review of the physiological data and neuro-
muscular system models (Ref. 9) concludedthat an adequatedescribing
function could be obtained in which the high frequency effects could be repre-
sentedby a third order system whoseroots were an adaptive function of the
muscle average tension level and the low frequency effects were modelled by
a lead/lag term whoseparameters were also variable. This describing
function for the neuromuscular system is shownin Eq. 1. The behavior of
this model has been shownto be consistent with the observed data.

Remnantsources exist in the neuromuscular system. The muscle and
feedbackelements generate noise and the adaptive nature of the system
parameters with muscle tension is an obvious source of time-variation, since
it is unreasonableto assume that the operator maintains the same level of
muscle tension over long periods. In addition the neuromuscular system
does inject a noise signal, "tremor," but at higher frequencies than of interest
in this study (Ref. 9, 14).

2.4 Data Analysis

2.4.1 Human Operator Describing Function, Yp (jw)

Figure 1 shows the familiar block diagram of the single axis, closed-loop,

compensatory display tracking task in which the human operator is an active

element. The total output of the operator c(t) can be considered as the sum

of two parts; 1) that due to a linear operation on the system forcing function,

ci(t), and 2) that part of his output not described by the linear operation, the

closed-loop remnant n(t), i. e.,

c(t) = c_(t) + n(t) (2)

To identify the linear model of the operator the technique used has been to

find the linear model which minimizes the mean square of the closed-loop
remnant, i.e. n(t) 2. The formal minimization procedure has been adequately

described in the literature (Ref. 2, 3, 4, 23) and will not be repeated here.
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The minimization of _-)2 without regard to physical realizability yields the
usual expression for Yp(jW):

Yp(j ) =
¢ie (_)

where @ic and @ie are the cross spectra between the system input and the

operator's output and error signal, respectively. These are defined in

Appendix A. In addition the remnant is found to be uncorrelated with the

system input, i.e.,

@in(_) : 0

(3)

(4)

2.4.2 Correlation Coefficient, p

The correlation coefficient p is a measure of the linearity of the human
operator and is defined as:

I@ic 12

_)2 - _.._
ll CC

(5

and since Yc is a linear element, p can be defined alternatively as:

p2 = I¢'io12
¢..¢
ii O0

(6)

This allows improved estimates of p at low frequencies where c(t) is very

small due to the high gain of Yc (J_) at these frequencies. Values of p

close to 1.0 indicate that the human operator is acting in a nearly linear

fashion, while low values indicate less than linear operation, and the

corresponding remnant will be large.

2.4.3 Remnant Power Spectral Density, _nn(w)

We can obtain the closed-loop remnant power spectrum by considering the

operator's total output spectrum as the sum of two uncorrelated spectra,

due to the system forcing function @cic i and the closed-loop remnant Onn:

¢ = ¢ +¢
cc c.c. nn (7

i i

209



where _ 2=

¢cic.m l+Ypy c ii (8)

From the definition of p we can represent ¢C.c. as:
t t

and hence

= p2_
c.c. cc (9)
i i

= (i - p2)_cc (io)nn

We can treat the closed-loop remnant as an open-loop quantity injected at the

operator's output _n n , or input 4_n n , provided we pass no nonlinear elementscc ee
in the process. The appropriate expressions are:

and

@ = i + Y Y 12_
n n p c nn (ii)
co

2.4.4 Relative Remnant, p2a

¢
n n

e e

I+Y Y 2

pc
y nn
P

(]_2)

The relative remnant p2 is defined in terms of the total amount of power in

the operator's output that is correlated with the system forcing function

relative to the total output of the operator:

2 = :_ _ _ (13)P
a

this can also be stated as

1 _(¢ccp2 _-,,, -_ )d_= - nn (14)
a
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2.4.5 Performance Measures

Since the tracking task requires the operator to maintain a minimum sys-

tem error signal e(t), a conve_,L_[_L iJv_ulm_,_Cv measure u_ _v u_v_a_,L

overall efficiency is that of the normalized mean square error or Score, de-

fined as:

Score = __e--Tx I00 (15)
iv

If the operator were to make no response at all to the input his score would

be 100, while if he were to act as an ideal high gain amplifier the score would
be zero.

Further system performance measures are the cross-over frequency c0c

and the phase margin _m " The cross-over frequency is the frequency at

which the amplitude ratio of the open-loop describing function IYpYc I goes
through unity and is a measure of the bandwidth of the closed loop system. The

phase margin Ks a measure of system stability and is the difference between

the phase of the open-loop describing function AYpY c and -180 ° at the cross-
over frequency.

2.4.6 Remnant Time Record, nc(t )

The extraction of the remnant time record is of major importance to this

study. The most convenient form of the remnant to obtain is that referred to

the operator's output, nc(t). This open-loop injected remnant is isolated from

the operator's total output c(t) by subtracting out that part due to the linear

operation of the describing function model on the error signal, this time record

is termed Ce(t ), where:

nc(t) = c(t) - Ce(t) (16)

The linear output ce(t) is obtained by convoluting e(t) with the impulsive re-

sponse of the human operator _/p(T). This impulsive response is calcu-

lated by inverse Fourier Transforming the describing function Yp(jW) (Ref.
24). That is:
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where Ce(t ) = f _p(_)e(t-_)d_ (17)
--oo

This inverse transform will be exact provided that Yp(jW) is known over an
infinite frequency range, but the data reduction methods of this study yield

Yp(jco) only within a limited frequency bandwidth. As shown in Ref. 1 this

frequency truncation has the same effect as convoluting the true impulsive

response with a "response window" analogous to the "spectral window', of

Ref. 13. The "smearing" effect of the response window was found to be

unacceptable and this approach was abandoned.

An alternative procedure was developed based on curve-fitting the Yp(jw)
data with as detailed a model as possible and performing the inverse Fourier

Transform on the fitted model. This yielded a closed form solution for the

inverse transform and allowed the identification of all the detail of interest in

the impulsive response within the accuracy of the curve-fitting. The model

chosen was the precision model of Ref. 3.

2.4.7 Amplitude Distributions

To obtain the probability density distributions of the signals in the system,

the mean and variance were calculated of samples taken from the time records,

taken sufficiently far apart to be considered independent. From these values

16 amplitude interval limits were derived such that the intervals had equal

areas under the normal probability density curve. A Chi-Squared test of fit

to the normal distribution was performed on each amplitude distribution

using the expression:

16 (0. - e.) 2

X2 = E l i
e.

I I

(19)

where o i and ei are the observed and the expected number of samples in the
ith interval, respectively.
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3.1 Equipment

The facility used in this study consisted of a modified CF100 iixed-base

flight simulator cockpit coupled with an AEI TR-48 analogue computer which

implemented the control loop elements external to the operator. An analogue

tape recorder was used to supply the prerecorded forcing functions, and the

time records of interest were recorded on digital tape through an analogue-

to-digital converter. The performance of the subject could be monitored on

an oscilloscope.

The flight simulator cockpit supplied an isolated environment for the sub-

jects during the experimental runs. The display was a CRT mounted above the

instrument panel, and the conventional control stick was replaced by the ma-

nipulators used in the study. Communication with the subject was possible

through the cockpit intercom system.

The compensatory display presented the system error signal to the operator

as a vertical displacement of a moving horizontal line from fixed reference

marks in the center of the display. The display-control relationship was that
of the artificial horizon, such that a pull back on the control caused a downward

movement of the line. This type of relationship was chosen originally because

of the number of subjects who had previous flying experience. Subsequently

all but one of these subjects were unable to participate in the program.

The two manipulators used in this study were center sticks, the zero output

position of the free-moving manipulator coinciding with that of the pressure

manipulator, such that the same muscle groups were used with both. The

free-moving manipulator, which was extremely light and frictionless with no

damping or spring-restraint, was mounted at floor level to pivot in the fore

and aft direction. Infinite resolution output was obtained by use of a conduc-

tive plastic potentiometer. The pressure manipulator consisted in a strain-

gauged force transducer rigidly supported such that an output was produced

only for direct loading. The output was linear with applied force with no
deadspaee or hysteresis.

The gain of the rate control vehicle dynamics was chosen such that all

the subjects felt comfortable. Following the convention of Ref. 3 the gain

is presented in terms of the steady state values referred to the output on the

display, which, for the rate control, will be in terms of inches per second on

the display per unit step deflection or force input to the manipulator. The
gains chosen were:
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Free-moving Kc = 0.632 ins/sec (display) / deg. (stick)

Pressure Kc = 1.14 ins/sec (display) / lb. (stick)

3.2 Forcing Functions

3.2.i UTIAS

The type of forcing function chosen for this study was similiar in spectral

shape to the augmented rectangular spectra of Ref. 3. As explained in that

reference the purpose of the low amplitude shelf extending out to high fre-

quency is to increase the bandwidth over which the describing function can be

identified by supplying additional power at a sufficiently low level that the low

frequency performance of the operator is unaffected. The data analysis

techniques of this study were only suitable for continuous spectra so the forcing

functions were obtained from the filtered output of a Gaussian noise generator.

The main low frequency sections had cutoff frequencies, ¢oi, of w i = 2.0, 4.0

and 6.0 rad/sec. The high frequency shelf was attenuated by 20 db and ex-

tended out to 15 rad/sec. To check the assumption that the high frequency

shelf did not affect the low frequency performance an additional forcing

function was made up with c0i = 4.0 rad/sec but no high frequency shelf. The
measured power spectra appear in Fig. 2. The RMS level of the forcing

functions was fixed at Gi = 0.5 in.

3.2.2 STI

During the course of the experimental program it was found necessary to

use a set of forcing functions identical to those of Ref. 3. These forcing

functions consisted in sums of ten sine waves of fixed amplitude and random

phase at the same frequencies as those of the reference, with the shelf at 20

db attenuation. The RMS level of these "STr' forcing functions was also

fixed at _. = 0.5 in. The line spectra are shown in Fig. 2.
1

To test the normality of the forcing functions, probability density distribu-

tions were obtained for all the runs and Chi-Squared tests of fitto the normal

distributionwere performed. The forcing functions were found to be, with-

out exception, normal at the 95% confidence level.
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3.3 Subjects

The experimental program was conducted with 8 optically normal, right-

handed subjects. All were volunteers and ranged in age from 20 to 40 years

old. Only one had previous flying experience. Apart from the initial basic

instructions which were given to each subject concerning the operation of the

system, the display-control relationship and the rate control vehicle dynamics,

each subject was allowed to develop their own control technique, under the
restriction that the whole arm be used to operate the manipulator.

The training program was quite prolonged and the subjects were brought

to as high and as consistent a level of performance as possible. Data was

recorded after each subject had accumulated in the region of 20 hours of

tracking experience. Statistical testing of the scores at this stage showed

that the subjects had reached stable levels of performance.

3.4 Run Procedure

Data was recorded for 4 runs at each condition of manipulator-forcing

function combination for each subject. This yielded 32 runs per condition

when averaged over subjects. The order of presentation of the experimental
conditions was randomized such that each subject received the complete set

in a different random order.

Each training and data recording session consisted of three, three-minute

runs, with a two-minute rest period between each run. The choice of a three-

minute tracking task was determined by limitations imposed by the data re-

cording system and considerations of subject fatigue. For data recording
the first of the three runs was used as a warm-up and data was recorded for

the remaining two. A short settling down period, when data recording,

allowed any starting transients in the closed-loop system to die out. At the

end of each run the performance score was calculated and given to the sub-

ject.

The collection of data took a considerable time and it was necessary to

check that the subject's performance had not improved markedly over the

period. Scores obtained after the end of the data recording period were com-

pared with those obtained at the beginning, for an identical set of conditions.

No significant improvement in performance was detected.

Initial analysis of the score data and describing function data showed effects

that could only be attributed to the type of forcing function employed. Conse-
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quently, the STI forcing functions were made up andfurther score data ob-
tained after a suitable training period.

Following the recording of the data in digital form it was processed on an
IBM 7094computer andthe describing functions andpower spectral densities
of interest were obtained. The very brief description of the data reduction
system appears in Appendix A. The following sections present a limited
selection of representative results. Since some of the data is very recent it
has been impossible to complete a detailed analysis, and the data is shownin
its grand averaged form.

IV. RESULTS

4.1 Performance Scores

Figure 3 shows the score data, presented as normalised mean square

error, for the effect of the manipulator and forcing function. It can be seen

that the pressure manipulator produces smaller mean square errors, hence

a better tracking performance. A decrease in forcing function bandwidth w i ,

causes a decrease in score except for the w i = 2.0 rad/sec forcing function.
Examination of the power spectrum of this input shows that the high frequency

shelf components tend to dominate this forcing function and produce an appar-

ently more demanding tracking task.

A comparison of the scores for the w i = 4.0 rad/sec input with and with-
out the high frequency shelf reveals that the shelf has a marked effect on

performance; its removal causes a large reduction in score. This result

does not agree with that of Ref. 3 and must be attributed to the type of forcing

function spectrum. Further evidence for the effect of the shelf can be seen

in the score data for the "B5" forcing function of Refs. 6 and 27. The "B5"

forcing function has w. = 2.5 rad/sec and a shelf attenuation of only 10 db.
l

This forcing function produces much higher scores than that of the normal

STI w i = 2.5 tad/see input.

The current data for the STI forcing functions and the free-moving mani-

pulator is shown in Table 1. The comparison with the data of Ref. 27 is

excellent, considering that a spring-restrained manipulator will give better

performance than a free-moving one.
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TABLE I

AVERAGED NORMALISED MEAN SQUARE ERRORS FOR

STI FORCING FUNCTIONS

_. (rad/sec) 1.5 2.5 4.0
i

Current Data

(Free-moving) 7.1 12.3 29.5

Ref. 27

(Spring-
restrained

Ref. 6

(Spring-

restrained

5.7 8,2 23,5

"B5"

52.0

58.0

4.2 Describing Function Data

The averaged describing function data is presented in Figs. 4 to 7, showing

the variability of the data and the influence of the manipulator and the forcing

function bandwidth. The data is plotted in decibels for the describing function

amplitude ratio and the various power spectral densities and in degrees for

the describing function phase. The appropriate definitions of decibels are

given in Appendix A. All amplitude ratios and power spectra are referred to

the display, i.e., the units of the operator output power spectral density are

inches (display)2/rad/sec.

Before discussing the averaged describing function data it is necessary to

know the variability in the data introduced by the subjects. Figure 4 presents
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the between-subject variability for the free-moving manipulator and a single
run of the ¢0i = 4.0 rad/sec forcing function. The error bars are the ± 1.0or

levels. A single sided error bar indicates that the variance of the data is

larger than the mean, and the -a level is then a negative quantity for which

logarithms are not defined.

The describing function variability is small in the medium frequency range,

around the cross-over frequency, and increases towards the low and high

frequency ends of the range. This increase in variability away from the

cross-over frequency is consistent with published data (Ref. 3, 6, 7). The

large variability at the high frequency end is due in part to the presence of

a peak similar to an under-damped second order system, whose center fre-

quency varies from subject to subject.

In general the variability due to the pressure manipulator is less than that

due to the free-moving manipulator and the intra-subject variability is less

than the inter-subject variability, particularly at high frequencies. Considering

the relative inexperience of the subjects and the difficulty of the tracking tasks

this low variability is very satisfying.

4.2.1 Effect of the High Frequency Shelf

Figure 5 reveals the effect on the averaged open-loop describing function

YpYc(jW) of the removal of the high frequency shelf from the c0i -- 4.0 rad/sec
forcing function for the free-moving manipulator. The phase shows no change

while the amplitude ratio increases such that the cross-over frequency rises

by about 2.0 rad/sec. This behavior represents a simple increase in gain
on the removal of the shelf which is borne out by the score data. This does

not agree with the data of Ref. 3.

4.2.2 Effect of Forcing Function Bandwidth

The data of Fig. 6 shows the influence of the forcing function bandwidth on

the averaged open-loop describing function for the free-moving manipulator.

In general the amplitude ratio has a slope of -20 db/decade in the region of

cross-over, while at the low and high frequencies the neuromuscular system

effects are apparent. With increasing forcing function bandwidth the ampli-

tude ratio tends to show an increase in gain and the center frequency of the

high frequency neuromuscular peak decreases. The phase lags tend to de-

crease over the low and medium frequencies but remain relatively constant

at high frequencies. These results agree in general with those of Ref. 3.
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The variation of the averaged open-loop describing function with ¢oi for
the pressure manipulator indicates the same trends but they are much less
pronounced. The lack of dependenceof the effects due to the forcing function
on the type of manipulator, and vice-versa, can be assumedin aii the following
results.

4.2.3 Effect of the Manipulator

In Fig. 7 the effect of the manipulator on the averaged open-loop describing

function for the wi = 4.0 rad/sec forcing function can be seen. The effect of

the manipulator on the amplitude ratio is confined to the higher frequencies

where the change to the pressure manipulator moves the neuromuscular peak

to higher frequencies. The center frequency of the peak for the free-moving

manipulator is around 15 rad/sec and for the pressure manipulator it appears

to be in the region of 18 rad/sec. The manipulator has a more pronounced

influence on the phase lag. The low frequency phase lags are lower or about

the same for the two manipulators but the medium and high frequency phase

lags are larger for 'the free-moving manipulator.

The trends due to the manipulator are consistent with the available describ-

ing function data (Ref° 6, 7). Although no direct comparisons are possible,

the differences in absolute values in amplitude ratio and phase lag that appear

are attributable to the forcing function differences and the fact that the current

data applies to a center stick configuration rather than a side stick and hence

to higher limb-manipulator inertias. The data of Ref. 7 is the only data of

wide enough bandwidth and for a sufficiently demanding tracking task to show

clear evidence of the high frequency neuromuscular peak similar to the current
data.

4.3 Remnant Data

In Figs. 8 and 9, the averaged linear correlation coefficient p and the

normalized open-loop injected remnant spectrum referred to the operator's

input, @nene, are plotted to show their dependence on the forcing function

bandwidth and manipulator. The correlation coefficient was calculated using

the expressions of Equations 5 and 6 in the appropriate frequency ranges.

The error bars representing the + 1.0 _ levels are shown for the comparison

between the manipulators.
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4.3.1 Effect of Forcing Function Bandwidth

Figure 8 shows the effect of the forcing function bandwidth for the free-

moving manipulator. It can be seen that the correlation coefficient p

maintains a high value over the low frequency range and then drops sharply at

higher frequencies. The near unity values of p indicate nearly linear be-

havior on the part of the operator, followed by more nonlinear behavior at

the higher frequencies. The frequency above which the nonlinear behavior

occurs is strongly dependent on the forcing function bandwidth; in fact, it

appears to be directly related to the cutoff frequency of the forcing function,

the less linear behavior being associated with the high frequency shelf. At

low frequencies p tends to decrease with increase in ¢0i.

The open-loop injected remnant was referred to the operator's input since

this form was found to have the least dependence on the manipulator and

forcing function (Ref. 3). Examination of _nene shows that except for low

frequencies the spectrum is basically flat and only slightly dependent on the

forcing function bandwidth. At low frequencies the remnant tends to increase

with an increase in wi, while remaining unchanged at higher frequencies.

4.3.2 Effect of the Manipulator

Figure 9 shows the effect of the manipulator on the correlation coefficient

and the normalized open-loop injected remnant for ¢oi -- 4.0 rad/sec. The
error bars indicate the total variability. It can be seen that up to the cutoff

frequency of the forcing function the manipulator has little effect on p. Be-

yond this frequency the pressure manipulator causes lower values of p than

the free-moving manipulator. This difference is significant at the 95% confi-

dence level at medium frequencies.

The variability of p shows the same behavior as that of Yp(jW). Around
the cross-over frequency the variability is very small, where p is near unity,

and the variability increases towards the low and high frequency ends of the

range. Over the high frequency shelf the value of p and its variability tend

to be constant while in the region of the neuromuscular peak p drops and the

variability increases.
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The influence of the manipulator on _nen e is slight and confined to the

higher frequencies where the pressure manipulator yields larger values of

remnant. This agrees with the data of Ref. 8, although the controlled element

dynamics are not the same.

4.4 Operator Output Power Spectral Density

Examination of the averaged operator output spectra for the various con-

ditions of forcing function and manipulator does not reveal any strong evidence

of nonlinear behavior within the measurement range, except possibly for the

pressure manipulator and 0_i = 2.0 rad/sec. The plots of _cc are given in

Fig. 10. The variability is not shown but, in general, within the forcing

function bandwidth the variability is low, rising to quite large values at the

high frequency end of the range. Since the large variability is confined to the

high frequencies in the same manner as the variability due to the neuromuscular

peak in the describing function data, the noted peak in the output spectra need

not be considered to be due to nonlinear or periodic behavior. However, in

the light of the probability density data that was very recently obtained it is

apparent that the output spectra should be re-examined on a run-by-run basis,

since the averaging process tends to hide the different modes of behaviour

that contribute to the large variability.

It can be seen from Fig. 10 that an increase in the forcing function band-

width causes an increase in the output level of the operator, which is to be

expected. The manipulator effect is confined to high frequencies where the

pressure manipulator produces higher levels of output than the free-moving

manipulator.

4.5 Relative Remnant

As defined in Equation 13 the relative remnant, p 2, is a measure of the

"total" linearity of the operator. Table II gives the values of p 2 obtained

under the influence of the forcing function bandwidth and manip_ulator. It can

be seen that an increase in w i produces a slight increase inp 2 , while the

pressure manipulator gives lower values than the free-moving manipulator.

Under the current experimental conditions about 60% of the operator's output

is due to linear operation. The effect of the forcing function bandwidth is

consistent with the data of Ref. 3 but the trend due to the manipulator does

not agree with that of Ref. 7 where the free-moving manipulator gave lower

2 than the pressure manipulator.values of Pa
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TABLE II

AVERAGED SYSTEM PERFORMANCE MEASURES

Manipulator

_i (rad/sec)

2.0

4.0

6.0

4.0 (No shelf)

2
Pa

0.63

0.65

0.71

Free-mo_ng

o

mc Cm

2.4

3.3

3.7

5.1

Pressure

2

Pa _c

54 0.50 2.7

45 0.57 3.5

52 0.62 3.9

2.8 - 5.7

o

Cm

6O

57

59

27

4.6 Cross-over Freetuency and Phase Margin

Table II gives the values obtained for the cross-over frequency, Wc , and

phase margin, @m • This data serves to summarize the behavior of the

describing function in the region of the cross-over frequency, and will not be

discussed in detail. However, the combination of the comparison of the

cross-over frequency data with that of Ref. 3, and the fact that, for the

forcing functions w i = 4.0 and 6.0 rad/sec, the cross-over frequency is less

than w i serves to indicate that regression has taken place (Ref. 3). Since

regression can be represented by a simple gain reduction the frequency de-

pendent characteristics of the describing function are not affected. The re-

duction in gain will result in an increased mean square error and will be

reflected in a high score.

This data shows that although the cross-over frequency has regressed, it

is still dependent on the forcing function bandwidth, and increases with in-

crease in ¢0 i.
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4.7 Remnant Time Records

The remnant signal most easily extracted is that of the remnant injected at

the operator's output, nc(t ), and the method used has been described in Section

2.4.6. The precision model parameters which resulted from the curve-fitting

procedure are presented in averaged form in Table III. The changes in the

parameters under the influence of the forcing function bandwidth and the

manipulator simply reflect the changes in the describing functions which have

already been discussed. However, it is interesting to note that although the

TABLE III

AVERAGED PRECISION MODEL PARAMETERS

Manipulator

_i (rad/sec)

Free-moving Pressure

2.0

K in/in 39.3
P

T secs. 0.12

-i

I/T L sec 0.60

I/T I 0.92

1/T K 0.25

I/TK, 0.01

I/TNI 9.2

_N 0.ii

_N 16.3

4.o 6.o

32.9 24.4

0.12 0.12

O.35 O.3O

0.71 1.12

0.20 0.23

0.01 0.01

i0.0 12.3

o.o9 o.o8

15.6 15.3

2.0 4.o 6 .o

48.7 45.7 34.0

o.o64 o.o64 o.o65

0.37 0.57 0.40

0.65 0.82 1.0

0.31 0.24 0.21

0.01 0.01 0.01

12.5 ii.2 12.8

0.15 0.13 0.15

18.3 18.0 18.1
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precision model has been used, in which the transport delay, _", represents

the relatively constant neural conduction and processing delays, a difference

in the values of • between the pressure and free-moving manipulators is re-

quired to obtain reasonable fits. This difference amounts to about 0.05 second,

and is unaffected by forcing function bandwidth. In addition, the adaptive

dynamics parameters are required to fit the describing function data, the

difference between T L and T I increasing with forcing function bandwidth.

As a check on the accuracy of the curve-fitting, the power spectral density

of the extracted remnant time record was measured and compared to the

spectrum _n n previously obtained. The match was found to be excellent
C c

and allowed considerable confidence in this technique.

4.8 Probability Density Distributions

Having obtained the remnant time records, probability density distributions

were calculated for all the signals in the loop, including the remnant. A single

representative set of distributions is presented in Fig. 11, for the pressure

manipulator and ¢0i : 4.0 rad/sec. The data appears in the form of histograms,
and the density can be derived by dividing by the width of the interval. A total

of 16 intervals were used, the two extreme intervals having, of course, in-

finite width. The horizontal line on each histogram represents the value for

a normal distribution. Chi-Squared tests of fit were performed on all distri-

butions.

The most striking aspects of the probability density distribution and Chi-

Squared tests of fit are that 1) the remnant time records are without exception

normally distributed, and 2) the operator's output shows a strong bi-modal

distribution. The system output and the error signal are also normally dis-

tributed. The bi-modality of the operator's output is unaffected by the forcing

function bandwidth and the pressure manipulator tends to intensify the bi-

modality.

The apparent anomaly in these results is that two normally distributed

signals, Ce(t ) and nc(t ), have been summed to yield a non-normal c(t). This

can be resolved by considering that Ce(t ) and nc(t) are correlated since Ce(t )
contains the closed-loop remnant signal. The probability distribution ob-

tained for the sum of the two signals is not then predictable. The theory

concerning the addition of normally distributed signals applies only when they

are uncorrelated (Ref. 15). The normality of the system output signal and

the error signal is not unexpected since the rate control dynamics act as a

low pass filter.
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The bi-modal distribution of the operator's output indicates the presence

of nonlinear behavior of the pulsing type, or a source of periodic oscillation

oI relativeiy high frequency. This must be reconciied with the describing

function data to produce a coherent picture of the operator under the condi-

tions of this study. This is attempted in the next section where the data is

briefly summarized.

V. DISCUSSION

Examination of the score and describing function data shows effects that

can only be attributed to the type of forcing function employed in this study.

The low variability of the describing function data and the excellent agree-

ment in the score data for the STI forcing functions allows considerable

confidence in the data as a whole. Removal of the high frequency shelf allows

the subject to develop performance levels which compare favorably with the

published data for the same forcing function bandwidth, while its inclusion

causes cross-over frequency regression and nonlinear behavior on the part

of some of the subjects. It is apparent that this effect must be investigated

further since it is often more convenient to develop data reduction methods

based on forcing functions of continuous spectra rather than sums of sine-

waves. It is necessary to find the minimum attenuation that should be used

for the high frequency shelf of a continuous spectrum forcing function such

that the describing function may be identified over a wide bandwidth without

causing regression.

The trends due to the manipulator in the averaged describing function data

and the remnant spectra have been shown to be consistent with published re-

sults. The effects on the remnant spectra are small and confined to high

frequencies. The variability of the remnant spectra is remarkabley small,

and is excellent evidence for the description of the remnant as due to a

stable source within the operator. The open-loop injected remnant referred

to the operator's input is shown to have a flat spectrum, particularly in the

medium frequency range. The most striking characteristic of the remnant is

that it is normally distributed even under conditions which cause the operator

to develop nonlinear behavior. The current data together with that available

in the literature show that only the controlled element dynamics have an

appreciable effect on the injected remnant, and this deserves further study.

The bi-modality of the operator's output amplitude distribution indicates

that the operator is developing nonlinear behavior in the form of high fre-

quency pulsing. This behavior is adopted in an effort to maintain reasonable
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levels of performance with wide bandwidth forcing functions, eventhough rate
control vehicle dynamics are not usually associated with this form of behavior.
The lack of significant peaks in the operator's output spectrum has beenfound
to be due to the averaging process and in actual fact the subjects can be split
into two distinct groups, those who generate nonlinear behavior and those
who donot; this approach is being continued.

The damping of the neuromuscular peak is too low to be considered compat-
ible with the small perturbation dynamics model and the under-damped second
order peak must be the describing function for the pulsing behavior. Exami-
nation of the amplitude distributions of the data of Ref. 7, where a similar
neuromuscular peakwas observed, should also showbi-modal operator output
distributions. This shows that the amplitudes of the pulses are correlated
with the system forcing function to a certain extent.

The transport delay term of the fitted precision model is at the lower limit
of the range of values given in Ref. 3 and about 50%of the lowest value of
Ref. 22. A large reduction in the value of TNJ would allow larger transport
delays and this will be investigated in a few ca]ses.

VI CONCLUDING REMARKS

Although the analysis to date has been limited, we can draw the following
conclusions from the results obtained from this study.

1) It has been possible to obtain good, low variability data from relatively

inexperienced subjects.

2) The type of forcing function spectrum is of major importance. Results

for continuous and discrete spectra of the same nominal shape cannot be

directly compared.

3) The open-loop injected remnant referred to the operator's input can be

considered as a normally distributed signal with a basically flat spectrum,

relatively unaffected by the forcing function bandwidth and the manipulator.

4) When the forcing function presents a sufficiently demanding tracking

task to the operator he will develop pulsing behaviour as well as cross-

over frequency regression even for rate control vehicle dynamics.
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VII. APPENDIX A

The following definitions of the power and cross spectral densities used in

•_ o+,,a. _-_ (Ref. 25. 26):

°¢xx(_) = Rxx(_)e-J_T d_ (A-l)

and °Cxy(_) = Rxy(_)e-0_T dT (A-2)

where ¢xx(W) and Oxy(W) are the power and cross spectral densities, respec-

tively, and Rxx(1- ) and Rxy(T ) are the auto and cross correlation functions,
respectively, for time records x(t) and y(t). The correlation functions are

defined, for ergodic processes and infinite record lengths, as:

T

Rxx(T) = lim __i / x(t)x(t+_)dt (A-3)
T_ 2T T

T

Rxy(_) = lim _ / x(t)y(t+_)dt (A-4)
T-_ 2T T

The correlation functions were computed from the digital time records

using the algorithm based on the Fast Fourier Transform of Ref. 16. The

variability introduced into the power spectral estimates by the use of finite

discrete time records has been fully discussed in Ref. 13 and 26. The

maximum delay used in the correlations was 12 seconds for a record length

of 165 seconds. The records were sampled at 25 samples/sec.

The definition of decibels used in this study for the presentation of the

describing function amplitude ratios and the power spectral densities are as
follow s:

Decibels = 20 log10 (Amplitude Ratio) (A-5)

Decibels = 10 log10 (Power) (A-6)
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II. DISPLAY SYSTEMS



11. Effects of DisplayGainonHumanOperatorInformation
ProcessingRate in a Rate Control Task

I I gv_,Bfl illJt 6

Daniel L. Baty

Ames Rearch Center, NASA

A single axis rate control tracking experiment was conducted to determine the

sensitivity of transinformation (information processing rate in bits/sec) to display
gain, display type (pursuit or compensatory), and forcing function bandwidth. Four
other performance measures were also derived: relative error, relative noiseless

error, relative remnant, and system open-loop crossover frequency. It was shown
that human information processing rates increased to a maximum and then decreased

as a function of both display gain and forcing function bandwidth. In general, little
difference in transinformation performance was noted between pursuit and compen-
satory displays.

This study is a continuation of research (refs. 1, 2, and 3) on the utility of
measures of transinformation for describing and predicting human performance in
tasks related to aerospace missions. In these studies the possible benefits to be
derived from an operator model based on this generalized measure were discussed,
and certain characteristics of the transinformation measure were explored for cer-
tain selected single- and multi-task situations.

For the previous experiments, display gain was fixed at a convenient nominal
value and held constant. However, when the models based on transinformation are

applied to real systems, it will be found that the display gains will be fixed by many
factors, e.g., available panel space, instrument priority, and data priority. Seldom
will it be found that the gains are the same as those used in laboratory experiments.
If the laboratory data are to be applicable (without requiring a new experiment for
each situation), the behavior and sensitivity of the operator transinformation must
be known for a wide range of display gain. The bandwidth of the displayed signals
will vary, and different applications will call for either a compensatory or a pur-
suit display. Therefore, it is necessary to know how performance depends on the
interaction of display gain with display bandwidth and display type. Although this
experiment was conceived primarily as a necessary interim experiment before
continuing with the multi-task modeling problem, it is believed that the results are
of general interest regarding the old compensatory versus pursuit controversy and
can also be used as an aid in display design. For this reason a general discussion
of display gain follows the discussion of the experimental data.

More concisely, the purposes of this study were (1) to determine transinfor-
mation performance in a single axis tracking task for a wide range of display gain
and forcing function frequency for both pursuit and compensatory displays and (2)
to compare these results with other, commonly used, performance measures.
Specifically, it was predicted that:

(1) There would be an optimum gain for each input bandwidth.

(2) For successively higher display gains, transinformation would be maxi-
mum for successively lower forcing function bandwidths, i.e., an inter-
action would occur between display gain and the input frequency.
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(3) Performance would be superior with the compensatory display at lower
forcing function bandwidths and with the pursuit display at the higher
bandwidths.

SYMBOLS

F1 through 5

G1 through 5

s(f)

N(O

00

(I)

11

designation of the five
experimental forcing
functions.

designation of the five
experimental gains.

signal power at
frequency f.

noise power at

frequency f.

output power spectral
density.

input power spectral

density.

I)

10
input to output cross-

power spectral density.

ee
error power spectral
density.

o} n
natural frequency of the
filter used to generate
the forcing functions.

Weft effective bandwidth of

forcing function,

.oo 2 oo

TASK AND PROCEDURES

The elements for the single dimension tracking tasks were displayed on a 14 in
oscilloscope. A 1/4 in. circle was used as reference with a 3/8 in. cross hair as

follower. Figure 1 shows the relationships between these elements for the com-
pensatory and pursuit displays. In the compensatory display the operator is pre-
sented with an input consisting only of the difference, or error, between the forcing

function and system output. In the pursuit display the operator sees both the input
and the output of the system. In both cases the operator's task is to minimize the
distance between the center of the circle and the center of the cross. The task

forcing functions were provided by a multichannel FM magnetic tape system. The
filtered output of a low-frequency Gaussian noise generator had been prerecorded

on magnetic tape. The recorded signal had been shaped by a second-order filter,
providing a -80 dB/decade power spectrum beyond the break frequency (COn) for a
forcing function. The filter gains at each bandwidth were adjusted so that the ex-
pected value of each recorded signal was essentially the same.

Operator error control was provided through compatible movement of a MSI
Model 438 sidearm controller with a specially made flexible control stick. The
stick was mounted upright and would deflect 1 cm at the top with a 6x105 dyne side

force. All conditions were run with velocity (K/S) control. For the middle display
gain (G 3, see below) the rate was approximately 8x10 -5 cm/sec error displacemen
per dyne with the rates scaled linearly for _i_e other values of gain.
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The subject was seatedinside a small portable cabwith his headagainst a
headrest to maintain 50 cm betweenhis eye andthe face of the scope.

Experimental Variables

Display gain. - Five values of display gain were used, covering a rangc as
wide as was deemed practical. The lowest value was chosen on the assumption
that the noise contributed by the operator visual system would be related to, and
of the same order of magnitude as, the visual angle commonly measured in visual
acuity tests. (it was recognized that the relationship between static and dynamic
acuity is not known in this application.) RMS visual noise was assumed to be 1' of
visual angle. With the eye 50 cm from the display, this corresponds to 0.0145 cm
vertical travel at the scope face. All gains were chosen as ratios of this value.

Table I lists the five gains in terms of this assumed rms signal-to-visual-noise
ratio, the rms signal amplitude on the scope, and the rms signal amplitude in terms

of the visual angle. G 4 was chosen with an odd ratio because 276:1 was the largest
value possible with a pursuit task on the size of oscilloscope used.

Display type. - Pursuit and compensatory.

Forcing function. - The effective bandwidths* used for this study were 0.06(F1),
0.12 (F2), 0.47(F3), 0.95(F4), and 1.88(F5) Hz, which correspond to con settings of
0.25, 0.50, 2.0, 4.0, and 8.0 rad/s. The amplitude for each experimental condition

was set to correspond to one of the values listed in table I.

Test Subjects

One left-handed and three right-handed males with normal corrected vision
served as subjects for this experiment. Three were college students and one was
a recent graduate.

Procedure

Instructions. - The subjects were told, "your score on this task is directly
related to how closely you can keep the cross centered in the circle throughout the
entire run." In an effort to motivate them, the subjects were informed of their

prior day's performance at the beginning of each day and were urged each time to
better their scores. The scores for each subject were available to all subjects;
but if this fostered any competition, the subjects made no mention of the fact. In a

further effort to motivate them, the subjects were informed before the beginning of
the counterbalanced portion of the experiment that the next runs were of special
importance.

*Effective bandwidth (Weft) is defined as the bandwidth of a rectangular power
spectral density that has the same area and variance as the power spectral density
being described.
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Gain

TABLE I. - DISPLAY GAINS

Signal-to-Visual-Noise Ratio*

1 2:1

2 10:1

3 100:1

4 276:1

5 1000:1

Rms Amplitude, cm

4-0.029

+ 0.145

_:1.45

+ 4.00

±14.50

Rms Visual Angle

2 f

10'

l°40'

4°35 '

16°10'

*Based arbitrarily on 1' rms visual angle as the assumed visual noise.

COMPENSATORY AND PURSUIT DISPLAYS

FOLLOWER -'1- 1 - -

ERROR

MOVING O
TARGET

FORCING FUNCTION
CENTER

REFERENCE

FOLLOWER

ERROR

STATIONARY
TARGET O

G.COMPENSATORYDISPLAY b. PURSUITDISPLAY

Fi_el.
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Performance measures. - Two scoring procedures were used. An on-line

relative rms error score was computed for each run to give a day-to-day indication
of _u_j,..,..._-"_"+=_m'n_reSS_o. The other procedure was to directly digitize and store on
magnetic tape the system input, output, and error signals. These signals were
always measured "outside" the system, i.e., the recording was always done with
the same rms input regardless of the display gain used. These data were used in
the off-line computation of the transinformation measure and other statistics.

Training and experimental design. - Table II summarizes the sequence of the
experiment for all four subjects. Each subject completed both training and Phase I
of the experiment with a particular display, i.e., pursuit or compensatory, before
starting training on the other display. (Subject C was given an additional replica-

tion for each pursuit condition due to an unavoidable three-week absence during the
second training period.)

For Phases I and II there were 20 conditions for the pursuit task (4 gains and
5 forcing functions) and 25 conditions for the compensatory task (5 gains and 5
forcing functions). An appropriate Latin square experimental design was used for

the two phases of the experiment. Five successive runs were given at one gain
with a random order presentation of the five different forcing functions. The five

runs at one gain constituted a session for the subject. Usually two subjects were
tested per day, one resting in a separate room while the other was being tested,

then changing roles for the next session. The result was that there was always at
least a 1/2 hour rest period for each subject between his sessions. Each subject
tracked for three sessions each day.

The duration of the runs varied depending on the forcing function bandwidth,
since the computer processing program required the same number of samples per
run regardless of the sampling time interval. The length of run chosen for each
condition was a compromise between the optimum sampling rate for purposes of
data analysis and the span of attention of the subjects. Run lengths were 6-1/2

minutes for F1, 3-1/2 minutes for F 2 and F3, and 2-1/2 minutes for F 4 and F 5.
During the session there was a 1-1/2 minute rest between each run.

Data reduction. - The input and output signals for each of the tracking tasks
were digitized on-line (sampled from track-and-store units at the rates of 5/sec
for F1, 10/sec for F 2 and F3, and 20/sec for F 4 and F5). For each pair of input
and output signals, 1800 samples per channel were obtained for each run and
stored on magnetic tape for off-line computation. Crosscorrelation and autocor-

relation values with 90 lags and subsequent power spectral densities were computed.
The transinformation values were obtained by the following formula:

fo [ s(f) ]Transinformation = log 2 1 + N(f) J df

-- af log2 [1 + ]
f L
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where

1 + S(f) _¢oo (f)
S(f) _nn (f)

and

Cnn (0 = %0 (f) -
[(_io (f)[ 2

_ii (f)

The other statistical values were obtained as follows:

Relative error =

Relative remnant =

Relative noiseless error = _(Rel. err.) 2 - (Rel. remnant) 2

RESULTS AND DISCUSSION

Training. - It was clear from the subjects' verbal reports that training with
one experimental condition transferred heavily to the other conditions because of

their similarity. There were only 5 or 6 trials per condition, however, making it
difficult to trace learning curves to show that skill had reached a constant level.

It did appear that the 120 to 125 training runs were sufficient to bring the subjects
to the point where motivation was a greater factor than level of skill in intrasubject
performance.

Transinformation data analysis. - Figures 2 and 3 show the average results for
the four subjects. These two families of curves show the same increase, then de-
crease in transinformation with increasing forcing function bandwidth as was found
in prior studies (refs. 1 and 3). Besides these general results two other features
are to be noted.

First, for both pursuit and compensatory tasks and for all five forcing func-
tions, the transinformation rate increased with each step increase of gain. This

trend was constant except at the highest gain. At the highest gain (G4 for pursuit
and G 5 for compensatory), the transinformation rate for F 1 and F 2 followed the
trend and was larger than for lower gains, but for F3, F4, and F 5, the rate was
lower than the value obtained at lower gain(s). This decrease was most dramatic
for the compensatory task, G 5.
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TRANSINFORMATION RATES FOR THE COMPENSATORY TASK
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Second, the bandwidth for maximum transinformation was dependent on display
gain. With higher gains the I0rcing f-,mction bandwidth where maximum transinfor-

mation was produced tended toward lower bandwidths. For example, for the ptu `-
suit task, the maximum for G 1 was F5, for G2 was F4, and for G 3 and G4 was F 3.
Note that the highest value of transinformation for both pursuit and compensatory,
slightly over 3 bits/sec, occur_ed at G 3 m_.d F 3,

Figure 4 provides a direct comparison of transinformation performance for the

pursuit and compensatory tasks. This graph was derived by plotting the difference
between pursuit and compensatory performance at comparable values of gain and
forcing function frequency. The scales are the same as those in figures 2 and 3.
This figure shows little difference in performance between the two displays except
for G4. Here the subjects performed better with the compensatory display at higher
input bandwidths.

In figures 5 and 6 the results in figures 2 and 3 are replotted in a more conven-
ient form for the discussion that follows. Optimum display gain can be determined,
or interpolated, directly as a function of the maximum bandwidth required for a

given display function. The range of gain for this experiment was wide enough that
optimum gains were determined for the three highest bandwidths, but not for the two

lowest bandwidths. For the pursuit task, all optimum gains were at G 3. For the
compensatory task, G 3 was optimum for F 3, and G 4 for F 4 and F 5.

Table III lists the standard deviations for each data point in figures 2 and 3.
The values indicate the intersubject variations but do not reflect the repeatability of
the data. Figure 7 shows the transinformation values for the pursuit task for two

subjects, the best and the worst. Both subjects follow the trend of the average re-
sults, yet their difference in ability is obvious. For the data in figure 7 the average
intrasubject standard deviation, averaged across all 20 conditions for the two sub-
jects, is 0.244 bits/sec, which is one-third of the average intersubject standard
deviation (0.731 bits/sec).

For the reasons stated in the Introduction, the original impetus for this study
was to measure the effect, if any, of display gain on operator transinformation
rates. This has been done. These transinformation rates will give insight into
operator workload in multi-task situations, but performance on each individual task
will still have to be rated according to some specific system criterion, e.g., maxi-
mum acceptable rms error in aircraft attitude control. Therefore, the four other
performance measures discussed next were computed from the same data to show
how they vary under the conditions of this experiment.

Other performance measures. - Figures 8 through 15 present the results for four
other performance measures: relative error (rms error/rms input), relative noise-
less error (relative error minus relative remnant), relative remnant (rms noise/rms

input), and open-loop system crossover frequency. One general statement can be
made about all of these measures: they respond to gain changes in roughly the same

way as did the transinformation measure. That is, performance generally improved
as display gain was increased. Relative error, relative noiseless error, and rem-
nant increased with increasing input frequency as would be expected. The increase,
then decrease of open-loop crossover frequency in a manner similar to the trans-
information results was not as obvious. The absolute values for each measure
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COMPARISON OF TRANSINFORMATION RATES FOR
COMPENSATORY AND PURSUIT TASKS
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TABLE III. - INTERSUBJECT STAND,A_RD DEVIATIONS OF TRANSINFORMATION

Values in bits/sec

_1 I I -p I F F=
- F2 I - 3 4 o

C 0.150 0.302 0.531 0.669 0.708
G1

P 0.094 0.129 0.345 0.479 0.746

C 0.267 0.3 ii 0.834 i. 104 1.22 8
G 2

P 0.23 9 0.427 0.780 1.4 i0 1.576

G 3

G 4

G 5

C

P

C

P

C

0.415

0.317

0.533

0.227

0.401

0.489 1.196 1.651 1.343

0.431 1.036 1.231 1.489

0.388 0.883 1.226 0.955

0.562 0.944 1.223 0.924

0.835 1.027 0.611 0.799

C = Compensatory

P = Pursuit

INFLUENCE OF GAIN FOR EACH FORCING
FUNCTION BANDWIDTH-PURSUIT TASK
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Figure 6.
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COMPARISON OF PURSUIT PERFORMANCE
FOR SUBJECTS A AND D GAIN
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RELATIVE ERRORS FOR PURSUIT TASK
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RELATIVE NOISELESS ERROR FOR PURSUIT TASK

1.2 f _'_,_ _° GAtlN

1.0
W

_.8
o 2

°z .6 o 4

_.4

,,9.2
rr

FI
0

.06 .12 .47 .95 1.88
EFFECTIVE BANDWIDTH, Hz

Figure Ii.

RELATIVE REMNANTS FOR COMPENSATORY TASK

GAIN
o I

1.2 o 2
,'. :5
o 4

1.0 • 5

E-
z

_.B

m

w

_>

_.4
.g
W
¢'r

.2

F 5
0 I

.06.12 .47 .95 1.88

EFFECTIVE BANDWIDTH, HZ

Figure 12.

256



..... ,_/_ _-r,,1NANT £ FOR PURSUIT TASK
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BODE CROSSOVER FREQUENCIES FOR PURSUIT TASK

1.2

U

-r 1.0

>_-
to

,,z,.B
Z,

0
b..l

_.6
rF

hi

>.4.
03

03
o
e:: .2
rj

GAIN

o I

o 2

5

_ F2 F3 F4 F5
II I I I

.06 .12 .47 .95 1.88

EFFECTIVE BANDWIDTH, HZ

Figure 15.

under each condition can be read from the graphs. It is of interest to note that the

decrease in performance noted for transinformation at the highest gain and frequency
for each display type was not uniformly found for these other measures. These data
for the high gains will also provide insight into why transinformation varied as it did.
The compensatory data will be discussed, but a simular discussion could be made

for the pursuit data.

It has been noted (fig. 2) that transinformation was less for G5 at F3, F4, and

F 5 than it had been for certain lower gains. Figure 8 shows that relative error is
larger for G 5 than for lower gains for these same inputs. In figure 10 there is
little difference in relative error between G 3, G4 and G 5 with the remnant removed.
This is consistent with figure 12, which shows that the relative remnant for G 5 is

considerably greater than for G 3 and G4 at F 3, F4 and F 5. Since transinformation
is dependent on the signal-to-noise ratio, this large remnant at G 5 provides an
explanation for the large drop in transinformation (fig. 2).

A final look at these data from one more direction may aid the discussion on
displays in the next section. Referring to figure 14, and considering only the con-
ditions with an input of F 2, it is seen that the crossover frequency for G 1, G 3, and
G5 was 0.20, 0.52, and 0.63 Hz, respectively. Calculations of the phase angles at
crossover for these data showed that the phase angle was nominally -140 ° in each
case. In other words, the subjects adjusted their gain in this stable system so that
they were operating with a relatively comfortable 40 ° phase margin at this frequency.
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As noted by Allen andJex (ref. 4), there has beenconsiderable work on the
compensatory versus pursuit display question; but most of the work has beenfor
pure gain dynamics, andthe results for other dynamics show anomalousresults.
The results of this experiment are in general agreementwith their re_ulL_'*_x_,.,_a_./
for the rate control portion of their experiment. Using a display gain falling be-
tween G2 and G3 and an input forcing function equivalent to one slightly aboveF3,
they found little uL_=_'-'_"......_,_._ in performance betweenthe pursuit and compensatory
displays. Their subjects performed with approximately a 40_phasemargin. The
only difference they found betweenpursuit and compensatory tracking was 40° less
phase lag for pursuit at 0.08 Hz, their lowest frequency analyzed. This result of
a lower phase angle for pursuit at that frequency was found in this experiment also,
although the nominal value of the difference was nearer 20 ° with less difference at

the higher frequency inputs.

Display gain application. - First it will be shown how these data relate to a
standard flight instrument, then the meaning of display gain will be discussed

more generally.

The 4 in. Bendix Type 17810 Horizon and Director Indicator is a current flight
instrument. With a few assumptions, the relationship between the operating region
of this instrument and these experimental data can be seen. The attitude marks are
spaced by 0.85 cm per 10 ° pitch. The instrument is normally about 69 cm from the
pilot's eye, so an assumed rms operating range of 5 ° pitch (0.425 cm vertical motion}
results in arms visual angle of 22'. Assuming low frequency wind gusts described

by F2, the operating point of this instrument could be placed at the "X" on figure 5.
It can be seen that strictly from the transinformation viewpoint the gain of the in-
strument could be considerably higher. If the gain of the attitude indicator were 1:1

with the true horizon, the operating point would be just slightly higher than Gain 4

(300:1, fig. 5) with a potential 75 percent increase in transinformation. Merely by
operating at Gain 3 (3.86 cm/10 ° pitch) there would be a potential 50 percent in-
crease. In a similar manner the potential change in performance can be approxi-

mated for the other performance measures. With an increase in gain to G 3 from
the point shown in figure 5, relative error, relative noiseless error, and relative
remnant would decrease by 35, 25, and 35 percent, respectively, and crossover
frequency would increase by 20 percent.

The problem of attitude control is particularly acute in high speed aircraft such
as the proposed SST because of large altitude changes with small changes of attitude.
Cruising at 1700 knots, a 1° attitude change from level flight would result in a ver-
tical velocity of 50 ft/sec, taking the aircraft through an altitude change of 2000 ft

in 40 sec. Without taking into account the effect of any disturbances, the "read-
ability" of the attitude indicator becomes extremely important. For example, pilots
talk of making "half-bar" corrections on the indicator discussed above, which cor-
responds roughly to a 0.6 ° attitude change (1 mm bar width). Even with this effort
the SST would leave the 2000 ft corridor in one minute.

Although this paper has followed the practice of calling the changes in ampli-
tude of the displayed signals changes in display gain, this might be misleading.
Used in this way it almost implies that something in the system has necessarily been
changed, where it has not. It might be better to speak in terms of changes of dis-
play discriminability or display amplitude. In a stable system increasing display
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gain increases the potential of the display, but the changeof gain in the system de-
pendson the demandor importance of the task as perceived by the pilot. As shown
by this experiment, the subjectsvgain did increase as display gain increased, be-
causethey were instructed to do their best and, in doing so, used the additional
potential available. A pilot needsan instrument that will comfortably allow the task
to bedonewell, but he is not likely to reduce "error" below a point of concern just
becausehe cando it.

Extending the examplewith the Bendix instrument will illustrate the problem in
a slightly different way. Assume that, instead of the 5° rms pitch used before, the
rms pitch is 1°, which would be a condition of milder turbulence. The rms visual
anglewould now be approximately 4'. This would place the gain at a point slightly
higher than G1. Sameinstrument, same scaling, different gainl Actually it seldom
makes senseto talk aboutthe gain of an instrument except in relation to another
instrument to be used for the same purpose; e.g., 50 ft/in, comparedwith 10R/in.
would be a scaling of 1:5 between instruments. (The notable exceptions to this is in
the presentation of vehicle body axes where gains can be expressed in relation to

actual degrees, as 1:1 with true horizon, etc.) The potential of what a pilot can do
with a display has to be defined in terms of the rms visual angle of the signal and
the bandwidth of the signal to be encountered. If, through the scaling of the system,
this translates to an acceptable rms error, or whatever the criterion, then the
scaling of the display is proper. In the examples using 5 ° and 1° rms attitude change,
the pilot probably has all the information he can use with the Bendix instrument for
the 5 ° condition, and in a slow and responsive aircraft the effective low gain for the
1° task probably makes little difference because altitude changes would be small.
But for an SST in cruise, the scaling of this instrument would not allow sufficient
gain for the pilot to perform the more critical task.

To use these data as an aid to designing an instrument such as an attitude indi-
cator, three steps are involved. First, define the "worst case" flight condition in
terms of the maximum excursions expected in attitude and the rate of these excur-
sions, i.e., the expected bandwidth of the task. Second, at the maximum task band-

width, locate the level of performance required to satisfy the criterion of system
performance as defined by relative error, etc. At this point read the gain (rms
signal) required for this performance (interpolate if necessary). Third, scale the
instrument so that the conditions defined in the first step produce the signal speci-
fied in the second step.

The scaling is now set so that the instrument is not the limiting element in the
system. However, other factors, such as excessive aircraft G forces due to ver-
tical accelerations, may limit performance so that the full potential of the display
is not used.

Comment on visual noise. - The assumed visual noise of 1 T rms visual angle
was chosen as a convenient low reference value with some degree of face validity,

since it is often quoted as an average value for minimum visual discrimination.
The lowest gain (G1) with an assumed signal-to-noise ratio of 2:1 based on this 1'
visual angle was expected to present a task that would be one of considerable dif-

ficulty for the subjects. Surprisingly, it was found that the data for G 1 assumed
significant values and the resulting functional plots assumed a logical place in the
family of gain curves. It is of interest to note the values of an estimated rms

visual noise at F 1 for G 1 that can be found by multiplying the relative remnant at
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that point by the rms signal. For pursuit the value is 1_ (0.5 X 2'), and for com-
pensatory it is 1.3' (0.65X 2'). Thesevalues are quite close to the assumednoise
value.

CONCLUSIONS

Performance on a single-axis, rate control tracking task was measured for a
wide range of display gain and forcing function frequency, and for pursuit and com-
pensatory displays. The following functional relationships betweenthese variables
were shown. For increasing values of forcing function frequency, transinformation
first increased, then decreased for bothpursuit and compensatory tasks, a result
agreeing with previous studies. For increasing values of display gain transinfor-
mation increased, except for the highest gain where transinformation decreased for
the higher values of forcing function frequency. The determination of these func-
tional relationships andthe approximate magnitudeof the differences was the primary
purpose of this experiment. The three specific predictions made in the Introduction
were only partially correct-

(i) An optimum gain for transinformation was found for the three highest
forcing function frequencies, but not for the lower two. It is conjectured
that an optimum would have been found for these also if higher gains had
been used.

(2) It was found, in general, that with higher gains the maximum points of
transinformation shifted to lower forcing function bandwidths.

(3) The differences in transinformation expected between compensatory and
pursuit displays were not found. The only apparent difference was with
G4 (the highest used for pursuit) where the difference was in favor of the
compensatory task at the higher frequencies -- just opposite from the

hypothesized result.

Performance in terms of four other performance measures, relative error,
relative noiseless error, relative remnant, and open-loop crossover frequency,
generally improved as display gain was increased. The results were in agreement
with one other recent study where data from comparable experimental conditions
were available.

Based on the data from this experiment, a technique was described for selecting
the proper scaling for an attitude display.
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12. Rotation of VisualReference Systemsand its

Influenceon ControlQuality
R. Bernotat

Geseiischaft zur F_;rderung der Astrophysikalischen Forschung e. V.

Dr.-Ing

Technical University Berlin

ABSTRACT

Electronic displays pose large human engineering possibilities and, at the

same time, new problems. One special aspect is the rotation of the display

reference system. The human operator is unable to compensate for rotation.
6 o

This is why tracking errors increase considerably at 90 and 270 rotation

angles. Related experiments are described in detail.

A new "action-display" indicating the stick signal to the control system

compensates completely for the rotation effect.

Problem

The move from mechanical to electronic displays which we are about to do offers

the anthropotechnical advantage that such display dimensions as scale factor,

formcoding of symbols, and the reference system can be freely selected. The choice
of the reference system within vehicle instrumentation requires special care. In the
field of aircraft instrumentation, for instance, extensive investigations are made to

answer the question whether the earth fixed or the vehicle fixed system is the better
one [1-4] .

Surprisingly, in the technical literature merely results about the one or the other

state resp. the switch-over between two discrete states of reference system and its
effects on the human reaction are mentioned. The questions arising from the rotation

of the visual reference system are treated scarcely [5] . No investigations concerning
continuous rotation are known to the author.

One example for this problem is the task of guiding a vehicle (ship, torpedo, missile

etc) by a vehicle fixed stick-coordinate system, using a display based on a different

reference system (figure 1).
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controlled vehicle

own vehicle

earth fixed

Figure 1: Radar display and attitude display

as examples for reference rotation

Let us specify the problem° The field we have to look at is "compatibility of display

and control". We need answers to the following questions:

1. What is the influence of rotation of the display about

its vertical axis on control quality ?

2. If there is a remarkable deterioration as a function of rotation

angle, what type of solution could be recommended ?

The author and his collaborators have done some studies concerning this problem.

. Experiments

The investigations have been concentrated on compensatory displays. With them,

it is much simpler to get error data in 2-dimensional tracking tasks without depending

on a special type of forcing function.

Figure 2 is a sketch of the experimental set up.

I YO

@:o Q

cq_flgum_s

Figure 2: Experimental set up and display configurations
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The sketch shows the joy-stick controller with its Yc, X_-coordinate system in the
ml LI it • _ •

horizontal plane. Ihe scope in ,he near .ert,ca! plane has a Y_,XD-COord,nate
system which can be rotated about its orthogonal axis. On the r_ght side of figures 2

and 3, the investigated display configurations are shown.

Display a: Pure compensatory-display without any additional ;rid "--*:^*,_._,,,,.,. v._'_

the rotation angle. Subjects were verbally informed about the

present rotation angle before the test run started.

Display b: Like "a", but with an overlayed coordinate display moving with "_".

Display c: No direct information about rotation angle is given. However,

at the target symbol an additional vector is fixed, the direction

and magnitude of which inform the human operator about the

status of his actual stick signal affecting the controlled system.

Display c is called "action-display" to distinguish it from the

reaction-dlsplay used normally.

Task: To compensate every deviation of the target from the center as

well as possible.

Noise: Instead of a forcing function a white noise signal was fed into the

controlled system in parallel with the stick signal. RMS of noise
was 12% of maximum RMS stick signal. High end cut-off frequency

was 1 cps.

Rotat ion: Rotation angle was changed in steps of 45 ° increasing from 0° to

360 ° . Because of special interest in learning behaviour no permutation

was used.

System: The controlled element was a 2nd order system, slightly damped.

KI = 0.1

KI TI = O. 15 sec.
A(p) = pT 1(1 + pT 2)

T2 = 5 sec.

Stick:

Scope:

Joy-stick, spring centered, length 8 cm,

max. deflection in any direction 12,5 cm.

CRT, 16 cm diameter.
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Environment:

Subjects:

Scoring:

Test chamber 2 x 2 x 3 m, sound attenuated,

voice communication w|th subjects by interphone,

temperature = 21 ° - 23 ° C,

humidity = 45%- 50%.

25 male persons, 20 - 35 years old, mixed education,
soldiers and research personal. 21 had no tracking

experience at all, 4 had no experience in this special

simulator. Every subject took part only in one test run
(a, b or c) to avoid transfer problems.

Every subject had to track for 10 minutes at a constant
rotation angle. Magnitude of target deviation from center
was recorded as error. RMS of error over the last 5 minutes

was used as score. For normalizing purposes the error

resulting from full display deflection over 5 minutes was
set as 100%.

, Resul ts

Because of the relatively small number of subjects with

n = 10 for display a

n = 10 for display b

n = 5 for display c

and the unsymmetrical distribution curves varying from rotation angle to rotation

angle, "median" and "quartiles" are used to describe the behaviour. Tracking
error is given as percentage value with 100% maximum possible RMS error as
mentioned before.
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Figure 3: The influence of reference rotation as

a function of display configuration
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Interpretation of figure 3:

Graph a: A remarkable increase in tracking error is seen around 90 °

and 270 ° rotation angle of reference system. As expected,

the interquartile range broadens near the same rotation
angles.

Error and interquartile range at _ = 0° as a normal system and

= 180 ° as a pure command system are comparatively small.

It seems that the human operator is unable to compensate

mentally for the rotation. Not even on longer test runs with
= 90° constant significant learning effects could be noticed.

Graph b: Under the given circumstances there appears to be no appreciable

improvement in human tracking behaviour by displaying the

rotation angle visually. This may change if the rotation angle

moves irregularily as it can happen in practice.

Graph c: Additional information about the input signal to the system helps

the human operator in such a way that the influence of reference

rotation can be compensated completely. Then there are no longer

any angular deviations that cause errors: note the lower median
level and the much smaller interquartile range. This means that

personal selection is no longer critical and better tracking perfor-
mances can be obtained.
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Figure 4 repeats for better comparison the medians for dispJay a, b and c.

I

0o

270 °

315 °

t0

30

180°

b

0

35 °

90 °

Figure 4: Reference rotation.

Median curves for different displays.
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4. Summary and outlook

As shown, a relative rotation between the stick reference system and the display

reference system causes human errors that are generally unacceptable in practical
control tasks.

One solution for this problem would be to let the stick coordinates follow the

rotation of the display coordinates. For technical reasons, this is often not feasible.

An economical and anthropotechnical solution is the "action display", which needs
only comparatively small technical resources.

It is planned to extend the investigations to pursuit displays soon. The question
remains to be answered whether use of "prediction display" could result in further

improvements. To the author's experience, this is not likely to be the case [6].
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13. Three Display Techniquesat the ManVehicle Laboratory

Laurence R. Young, L,,,o,,+o""--'-"M. Oman

Robert M. Vircks, Noel A. J. Van Houtte, and Gordon G. Kemp

Massachusetts Institute of Technology

Abstract

Three display techniques designed to reduce man's uncertainty about his

spatial orientation are presented:

1) A 3-D display system is described in which a simple computer-generated

C. R.T. contact analog system is controlled by movement of the observer's

head, as well as by vehicle motion.

2) A prototype VTOL guidance and control display is being developed. All

attitude and guidance cues are presented on an integrated horizontal situation

display in which pitch and roll angles appear as vehicle axis projections, and

predictive display of attitude and position is used.

3) An "Anti-Vertigo" research display is being developed in which visual-

vestibular conflict is reduced by driving a rotating visual field at rates

determined by a mathematical model for vestibular function.

3-D Display System

With the increasing complexity of modern V/STOL aircraft, helicopters,

undersea vehicles, and spacecraft, and the precision maneuvering require-

ments which are being placed upon them, there is clearly a need for more

advanced display systems than are available today. These displays must
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convey information, in an integrated and visually compelling fashion, about

the vehicleVs position and orientation in space. Since September 1966, the

laboratory has worked on the development of a hybrid computer-generated

contact analog visual display (Reference 1) in which various perceptual "depth

cues" are included on a two-dimensional C. R.T. screen. The concept of the

incorporation of multiple depth cues in contact analog displays is certainly not

new. Indeed, the term "contact" implies that the pilot will be presented with

a display which appears to be, insofar as is possible, a view of the real world

as seen from his cockpit while flying contact V. F.R. and navigating by looking

out the window.

The most straightforward way of including three-dimensional information

in a display is to create a stereoscopic view. Several techniques are currently

available to do this, but all of them generally have multiple disadvantages

which make them impractical for displays of this type. As stereopsis could

not be practically achieved, a study was undertaken to determine the depth

cue value of head movement perspective and image intensity as a function of

depth.

The apparatus developed for the study consists of a computer-generated

C. R. T. display of a'cube, as shown in Figure 1. The depth cues provided

5 cmI i

Figure 1. The Cube With Three Edges Dotted.
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are linear perspective, and variable intensity of the image as a function of the

distance from the observer's eye to the cube. The cube appears as a solid

object. The display operates continuously, showing the "updated" scene

thirty-two times per second. The observer, or "pilot" is provided with

control stick inputs to a set of analog dynamics. The translational and rota-

tional velocities of the vehicle in the vehicle fixed coordinate system (Figure 2)

are used by the digital computer to update the positions of the corner points

of the inertially fixed cube, using a nearly orthogonal, alternating order,

serial updating difference equation procedure.

8- PITCH

Y
\ \

N\

iL,".) _- YAW

Z

Figure 2. Coordinate System Notation. Translation of the
Coordinate Axes Controls the Location of the

Observer's Eye, While Rotation of the Axes
Indicates the Orientation of the Observer's

Window.

A cube seemed to be the ideal object to display for experimental purposes,

because of its simple linear shape and its symmetry, which could be exploited.

By representing the cube (in two dimensions) on the screen as four triads of

three lines each, as shown in Figure 3, only minimal data transfer between

the digital portion of the display program and the analog line drawing circuits

is required. This is because each triad can be conveniently drawn para-

metrically in time if the screen coordinates of the vertex point are also

obtained.
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Figure 3. The Cubeas a Set of Four Triads.

The edge lines hidden by the cube's own volume were not displayed. It was

found neccessary to omit the hidden lines because perspective reversals,

accompanied by apparent rotation reversals, occurred too frequently when

all lines were displayed. Perspective reversal is the visual illusion that the

rear of an object is closer than the front. The "Necker Cube" (Ref. 2) is a

well known example of the phenomenon. To perform hidden line removal, the

computer keeps track of the scalar product of the outward pointing normal

vectors of each face of the cube with a vector from a point in the plane to the

observer's eye. The plane can only be seen if the dot product is positive.

Since the cube is symmetric, it was necessary to provide additional cues

to allow determination of the cube's attitude so that ambiguities in vehicle

position could be resolved. This was done by presenting three edges of one

face as dotted lines, as shown in Figure 1.

An experiment (Ref. 3) was conducted which determined the amplitude of a

sinusoidal voltage applied to the C. R.T. intensity grid as a function of line

length so that lines drawn in constant time intervals would have an apparent

brightness independent of line length.

A method of monitoring the observer's head position was needed in order

to include the head movement depth cue. The computer uses the information

to produce the proper changes in aspect and screen parallax to make it appear
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to the observer that he can "look around" _^ The singleL_I_cube. _. a×is prototype

head position monitoring system used is a photo-optical device built by

P. Bowditch, H. Seward, and G. Davidson of the M.I.T. Instrumentation

Laboratory to our specifications. The system consists of a light source

mounted on a head band worn by the subject, as shown in Figure 4. A lens

and two silicon photodiodes are mounted seven feet above the light source,

as shown in Figure 5, and masked so that the source throws a rectangular

patch of light onto the two photodiodes (Figure 6). Translation of the head

changes the relative illumination on the two photocells, yielding an output

voltage proportional to light position.

Depth discrimination experiments were conducted using the perspective

display with combinations of head movement and cube intensity as a function

of depth. A 5 cm cube was displayed as if it were at one of a set of discrete

depths, and the subject was asked to identify that depth. The resulting

stimulus-response matrices were analyzed to determine the information

transmission. It was found that head movement gives a 40 percent improvement

in depth discrimination over a display with no head movement input when the

cube is between 50 and 100 cm from the subject. Head movement is four

times more helpful when the cube is between 50 and 100 cm from the subject

than when the cube is between 150 and 300 cm. Intensity variation resulted in

half as much improvement as head movement.

"Bottom Window" VTOL Display

An integrated VTOL display is being simulated on an M. I.T. "Adage

Graphics Terminal." The display is intended to provide the pilot with

sufficient information to control the VTOL in attitude and position throughout

all phases of VTOL operation, with or without automatic stability augmenta-

tion. Prediction information is used to permit pilot control of an otherwise

uncontrollable vehicle.

As shown in Figure 7, the display is basically an inside-out "bottom

window view" with the face of the display mounted horizontally. The C. R. T.

displays a grid which moves as though the aircraft were travelling over a

grid painted on the ground. The grid moves aft along the display face to

indicate forward velocity and sideways to indicate sideslip. Increasing

altitude is indicated by decreasing grid size as compared to a reference square

or "window" which is drawn on the lower half of the display face. When the

grid size is identical to the window size, the aircraft is at zero altitude. The

origin of the grid is at the center of the window. Locations of interest (e. g.,

landing sites) will be marked on the grid with a prediction line showing
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Figure 4. The Subject with Head Band and Light Bulb. 
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Figure 5 .  The Head Position Monitor, 
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Figure 6. Schematic Drawing of Photocell Arrangement.

computedfuture position. Headingwill bedisplayed alpha-numerically at the
top of the display with a prediction line showingcomputedfuture heading.

The attitude display will not be the normal horizon line type display but
rather will show the direction of the z axis of the aircraft. Thus roll will be
indicated by displacement of a fore and aft line on the screen and pitch by
displacement of a lateral line. When the aircraft is straight and level, the
intersection of the two lines will be in the center of the screen. Predicted
pitch and roll will be indicated by a line emanatingfrom the intersection of the
pitch and roll lines.

277



attitude
bars
(roll)
(pitch)

predicted
locations
of aircraft
"z" axis

desired heading heading deviation future hdq deviation

"_268 \ J
•_ J landing

site

predictedpath of

"_'"_' _ f landing
site

lsrid lines
how

position
and velocity)

desired
J X 4--- ------------- value of

pitch and
,, roll

altitude
window

J predicted
altitude
windows

Figure 7. Proposed Display.

The prediction times for the attitude indications will be different from the

prediction times for lateral indications but both will be computed using a

much simplified set of equations as compared to the equations which will be

used for the vehicle dynamics simulation.
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Anti-Vertigo Display System

In recent months, laboratory efforts to develop valid mathematical models

for the semicircular cammls ^-_ -*^'_+_ (_ a) using the techniaues of

control theory have been reviewed in an attempt to define and investigate the
etiology of vertigo, and the interaction between visual and vestibular motion cue

inputs. We conclude that the one basic circumstance associated with most

cases of vertigo is that a conflict arises as a man attempts subconsciously to

continue the process of establishing a conception of his dynamic orientation in

space in the presence of contradictory visual and vestibular cues. We believe

that the occurrence of disorientation resulting from conflicting sensory

modalities might be alleviated by a system which shows a vertiginous subject

a display of the outside world oriented with respect to him so that it would agree,
on the average, with his subjective prediction of the orientation of the outside

world based only on his nonvisual modalities. In essence, the conflict between

the visual and the vestibular input, presumably the major source of sensory

modality conflict in most situations, would thereby be resolved.

Hence, experiments were undertaken to investigate visual and vestibular

motion cue interaction (Ref. 5). The laboratory's rotating chair was modified

as shown in Figure 8 to include a rotating drum projector (Fig. 9) to produce

a moving stripe display on a screen inside the cab. Subjects were seated in

the closed cab and stimulated so as to experience a simple form of vertigo,

"dizzyness," which results from lingering sensation of rotation after a cessa-

tion of angular velocity. A non-rational parameter computer model for human

vestibular response to angular acceleration in a horizontal plane (Fig. 10) was

used to control the moving bar display, thus creating a visual input which

could be made to agree or to disagree with the theoretical subjective sensation

of motion relative to the outside world. The system is diagrammed in

Figure 11, and the actual mechanism is shown in Figure 12.

Preliminary experiments involving four types of tests on five subjects were

performed. A typical velocity profile is shown in Figure 13. Subjects were

asked to indicate the onset of sensation of rotation in a given direction by push-

ing a bi-directional switch, and to signal each ninety degrees of subsequent ro-

tation in that particular direction. In addition, subjects were told to indicate

directly when they felt confused in that they could no longer determine their

angular velocity. The results of the experiments indicated that in the presence

of a conflicting visual cue, subjects either became tmable to assess their

angular velocity, or reported subjective velocities which were primarily

vestibular in origin. No confusion was reported when the display was driven

so that the visual cue was sympathetic to the theoretical subjective angular
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velocity profile, even though it was not identical with the actual chair velocity. 
(Figure 13 is typical. ) However, every subject reported confusion either when 
the display was antisympathetically driven or when the visual input was driven 
so 'chat it was sia3i:ized with respect tc the ccttside w~r!rl. 

Figure 8. Rotating Chair. 
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Figure 9. Moving Stripe Projector. 
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Figure 10. Model for  Subjective Sensation and Slow Phase Nystagmus Velocity 
for  Rotation about a Vertical Axis. 
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Figure 11. Anti-Vertigo Display System Schematic.
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14. Applications of Tactile Displays for Pilot Cuing*

JohnW. Hill, James C Bliss, and Kenneth W. "'"_;-• u., .,,, er

Stanford Research Institute

ABSTRACT

Several vibrator, air jet, and moving button tactile displays were evaluated

as cuing aids for pilot training. The best displays, as determined by tracking

performance, were built into a GAT-1 trainer. These displays were further evaluated

for their ability to help pilots control the trainer in some flight simulation track-

ing tasks.

INTRODUCTION

In our laboratory manual tracking experiments are carried out on a LINC-8

computer system. A tracking program (Bliss, Hill, and Wilber, 1968, Chapter 10)

generates the sum of sinusoids command signal, accepts the joy stick output,

simulates the test vehicle, and computes the resulting error signal for the

display. In addition, the program performs an on-line Fourier and power analysis

of any pair of the four available control signals (error, displayed error, re-

sponse, or vehicle position). The advantages of this system are its flexibility

in tailoring the task, (e.g., the command signal) and speed of obtaining perform-

ance parameters after a test run.

This program was used to evaluate three intensity displays, each using

two vibrators mounted on the arms of the test subject. The three displays were

(I) linear--no vibration for no error and vibration increasing linearly with

error on one vibrator when the error was positive and on the other vibrator when

*The research reported in this presentation was sponsored by the Training Research

Division of the Air Force Human Resources Laboratories under Contract F33615-68-C-1435

with Stanford Research Institute.
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the error was negative, (2) differential--equal vibration amplitudes with zero

error and a linear unbalancing (up to 0-100%, or 100-0%) with increasing positive

and negative error signal, and (3) cuing--no vibration within a symmetrical error

band and maximum vibration when the error was outside of this band. Varying the

gain of all three displays revealed that tracking performance was best when the

full scale deflection of the displays was between 50 and i00 percent of the command

signal RMS value. The combined operator-integrating vehicle describing functions

of the three displays is shown in Fig. i. Comparison of the tracking results of

the three displays showed that the linear algorithm was best and the cuing algo-

rithm worst. The equivalent gains for a simple cross over model (McRuer, et al,

1965) of the three displays from linear to cuing were 2.24, 1.56, and 1.19, re-

spectively. Since a gain of 3.30 was obtained with the same subjects using a

scope display of the error, tactile tracking with the linear algorithm was only

slightly poorer than visual. The equivalent operator time-delay (0.17 sec) was

about the same for all the displays.

A new air-jet ripple tracking display was also evaluated using the same track-

ing program. The jets are mechanical stimulators pulsating at 150 Hz and producing

pressure pulses of about 1 psi amplitude (Bliss and Crane, 1965, Appendices A and F)

The error was presented to the subject by a linear array of seven jets on the back

of the left index finger and hand with the center jet of the array positioned over

the first knuckle. The timing of the display was similar to the Thunderbird auto-

mobile tail light turn signals, but with inward rippling instead of outward. During

the first timing interval the computer samples the error and decides how many of the

jets, measured away from the center jet, to turn on. The larger the error, the more

turned on. In the next time interval this number of jets are activated on the

proper side of the center jet depending on the sign of the error. The next suc-

ceeding steps reduce the number of activated jets one-by-one toward the center

until all the jets are off. The program then samples the error again and repeats

this procedure.

This ripple tracking display was designed to produce sensations varying along

several dimensions (intensity, position, recycling time, and possibly apparent

motion). Tracking tests using the display showed that the back of the hand, the

fingertips, and the whole length of the forearm were suitable locations for the

display. In all cases a few practice runs were required to familiarize the subject

with the display on every new area. Testing of displays with different rippling

speeds showed that the faster the rippling speed, the better the performance.

There was no increase in performance with 50 and i00 ms timing intervals suggest-

ing that tactile apparent motion which is often reported with these timings
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three subjects using a scope tracking display and three vibra-

tor tactile displays.

287



(Kotovsky and Bliss, 1963) does not improve performance. Varying the gain of

the display showed that when the full scale display was adjusted to 100 to 150

percent of the command signal RMS value, performance was best. The best ripple

tracking display, chosen for timing and gain as described, produced results

very comparable with visual tracking. The describing function for the ripple

tracking display is shown in Fig. 2. The gain of the simple cross-over model

for visual and ripple tracking of the same command signal are 3.30 and 2.85,

respectively. The equivalent time delays were both 0.15 sec. Thus, the best

vibratory and ripple displays are almost as good as visual displays in these

tests.

Two stick mounted tactile displays were constructed, but not given pre-

liminary testing. One of these was a thumb button display which had two small

balanced buttons, contactable by the left thumb on the top of the control stick.

A servo drove the buttons in teeter-totter fashion (when one up, the other down)

linearly from the error signal. The other display was the palm button. Here

one long drive rod connected through the stick handle was pushed either out one

side of the handle or the other by the servo. The resulting action was either to

push the button into the palm or opposing fingers.

The first GAT-I experiment compared 5 displays on an altitude holding task.

The 5 displays were (air jet, linear and cuing vibrotactile, and thumb and palm

button). In each test the pilot attempted to hold his altitude constant at

i000', his heading constant at 270 ° while following a time schedule requiring

him to change airspeed every 90 seconds.

On each run one of the tactile displays presented the altitude deviation

from i000' A computer program monitored both the altitude and heading devia-

tions over a five minute run, and printed out the error power. Of all five

displays tested, the air-jet display gave the largest increase in performance;

however, all changes were small and there appear to be no significant differ-

ences with or without altitude cuing by any of the displays.

In a short sub-experiment, heading cues (±4 degrees) on the same task gave

larger increases in performance than altitude cuing. The average change was to

halve the heading error power.

The next experiment compared altitude tracking with and without each pilot's

favorite display. The pilot's task was to hold his altitude constant at i000'

and his heading constant at 270 ° for the five-minute run. A psuedo-random

command signal, added to the GAT-I's altitude made the task fairly difficult.

Both altitude and heading cuing were tried. The computer program monitored the

subject's altitude and heading deviation and computed the operator transfer

function. There were no significant differences in performance with or without

the displays.

The third experiment measured the pilot's ability to make an ILS landing

approach with and without tactile cues. The pilot was instructed to maintain his

air speed at 85 mph during the approach and to stay centered on the beam. Tactile

cuing tests alternately using air speed deviations (±3 mph) and glide slope

deviations were carried out. As with the altitude tracking experiment, there

was little change in performance with the cues.
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In several instances, especially in ILS landing, pilots reportedly changed

their strategy to maximize the use of the tactile cues. This was mainly

accomplished by changing the instrument most closely watched. However, these

changes in strategy did not greatly change the monitored performance. On the

assumption that aircraft tracking does not measure the changes brought about by

tactile cuing, we are designing another, hopefully more sensitive, experiment.

The experiment will measure the amount of time a student has to handle other work

loads with and without cuing and his rate of learning with and without cuing.

Even though our experimentation is not complete, if we could state some

guidelines, concerning the applicability of tactile cuing, they would be:

(I) It is better to cue secondary instruments because a pilot apparently

neglects primary cues for the primary instrument itself

(2) Cuing is better on tasks involving less pilot activity

(3) Tactile displays are correctly interpreted more often when located

on body locations not involved with motion

(4) Displays which are always felt (like vibrators attached to the

body) are better than displays which need to be actively felt

(like thumb buttons).
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15. Step Tracking: In What Sense is this Optimal *

Gyan C. Agarwal and Gerald L. Gottlieb
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I. INTRODU CTION

It is not too difficult to convince ourselves via some intuitive reasoning

that human motor coordination is an optimal, adaptive system. It must be so

because the process of evolution suggests optimality. Once we take it for

granted that the human motor system is an optimal system, as engineers,

we should like to know in what sense is this system optimal. This infor-

mation about optimality, if it can be obtained with our present methods of

investigation and analytical tools, would certainly be useful in many ways:

a) for knowledge sake itself, b) for designing better man-machine interfaces,

and c) for designing better prostheses.

The adaptation in dynamic response characteristics of the human

operator has been studied by a number of investigators [1-6] . An adaptive

controller, as defined by control engineers, basically performs three

functions: 1) Identification, 2) Decision, and 3) Modification [7]. In

the case of the human operator, the identification includes an estimate of

the dynamics of the plant being controlled by the operator, as well as the

input signal. The decision is based on some criterion which is either de-

fined by the experimenter or is to be chosen by the operator. The modifi-

cation may include changes in the parameters of the plant being controlled or

changes in the parameters of the human motor control system itself.

In this paper, we will describe some results obtained in the step

tracking situation in normal human subjects.

II. METHOD OF EXPERIMENT

Our subjects were seated normally in a chair with the right leg

extended and the foot strapped to a rotatable plate. This plate could be

allowed to rotate freely for isotonic tracking or it could be locked in one

position and the torque applied to it measured by strain guages for isometric

tracking [ 8 ] . The mechanical output, either foot torque or foot angle, was

used to control the vertical position of a spot on a CRT for visual feedback

to the subject. This output was also recorded by a digital computer in the

unpredictable tracking experiments at 240 samples per second.

*This work was partially supported by NIH Training Grant 1436-03.
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We also recorded the EMG's of the two antagonistic muscle groups that
control the flexion of the ankle joint, the gastrocnemius-soleus muscles (GSM)
that plantarflex the foot and the anterior tibial muscle (ATM) that dorsiflexes
thefoot. These EMG's were full wave rectified and filtered and recorded by
the computer at 480 samples per second.

With this setupwe performed two types of experiments, tracking of
periodic, predictable steps (with both isotonic movements andisometric
efforts) andtracking of unpredictable steps (also isotonic and isometric).

For the predictable tracking experiments we would display two distinc-
tively different spots on a CRT, one controlled by the subject's output and the
other controlled by a square-wave function generator. The subject would
track this square wave. The target, his foot response andhis two EMG's
were displayed on a secondCRT and photographedthere.

For the unpredictable tracking experiments the target was controlled
by a digital computer which would move it to anyone of three target positions
at intervals which varied randomly from 7 to 10 seconds. For one second
after the target moved, foot response andthe EMG's would be recorded by the
computer and stored on magnetic tape. After recording approximately 175
step responses, the individual responses would be divided into six groups
according to the initial and final target positions. Then, each group would be
aligned so that all the foot responses commencedat the same point in time
andthey were then averaged together. Experiments were performed on two
well trained normal subjects.

For conveniencethe following notations will beused:

D - Dorsiflexed position (angle or torque)

N - Neutral (zero angleor torque)

P - Plantarflexed position (angleor torque)

The transitions betweenpositions will be denotedby double notation;
for example, the transition from plantarflexion to dorsiflexion will be denoted
by P-D. In computer plots, negative values for angle or torque are in the
plantarflexion, and positive values in the dorsiflexion. In CRT figures, the
upward movement is in the dorsal direction.
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III. RESULTS

1. Isometric - Predictable

The typical responses in the case of isometric tracking of predictable
square wave inputs are shownin Figure 1 at three frequencies (f=0.4, 0.6,
0.8 Hz). The input frequencies above0.8 Hz were found to be difficult to
track becauseof fatigue. From these responses the following observations
canbe made.

a) The antagonist muscle is silent during the changein the direction of
effort as well as during the maintained effort position. For example
in Figure l(a) for P-D transition, ATM is active and GSMis completely
silent.

b) At low frequencies (below0.6 Hz) the subject is normally leading the
target, whereas at frequencies above0.6 Hz the subject behaves like a
synchronized oscillator at the target frequency with highly variable phase
relation.

c) In Figure 1(c), the EMG in both muscles is initially maximum at the
onset of transition andthen slowly decreases.

d) Noovershoot in the responseswas observed.

e) At the higher frequencies (0.6, 0.8 Hz), the D-P transition is
braked very slightly by a brief burst from the ATM just prior to
reaching the fully plantarflexed level. That is, the ATM is turned
off as the effort is begunbut then turned onvery briefly as the effort
is completed. This pattern is not present in the GSMduring dorsi-
flexions.

2. Isotonic - Predictable

Sometypical responses in the case of isotonic tracking of a predictable
square wave input are shownin Figure 2 at frequencies, f--0.6,0.9, and 1.4 Hz.
In this experiment, the following observations canbe made.

a) At frequencies below 0.7 Hz the subject is normally lagging the tar-
get; 0.7 Hz seems to be the transition frequency from the lagging to
leading phase relation. At frequencies above0.7 Hz the subject be-
haves like a synchronized oscillator at the target frequency with highly
variable phase relation. At these frequencies the dominating character-
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istics are phase lead as in Figure 2(c) and phase reversal (not shown

here).

b) The dynamics of the system in D-P and P-D transitions are quite

different, and this change in dynamics is consistently noticed at all

frequencies studied.

c) The EMG is a short burst of the appropriate muscle at transition

and the antagonist is silent.

d) Consistent overshoot in the response and the D-P transition shows

damped oscillation.

3. Isometric - Unpredictable

Individual responses for the six transitions between the three stages

(P, N, D) are shown in Figure 3. The first and the second derivatives of

the foot torque (effort) shown in this figure were calculated by digital differen-

tiation. The averaged responses are shown in Figure 4. All the data presented

here are for subject GA, except Figure 5. For the data shown in Figures 3

and 4, the subject made quick responses between the transitions. Consequently
sometimes the initial effort was in the wrong direction, see Figure 3(c). For

the data shown in Figure 5, the subject was careful not to make initial effort

in the wrong direction. From this data the following observations can be made.

a) Large overshoot is present in transitions P-N and D-N (Figure 4a, f),
small overshoot in transitions N-P and N-D (Figure 4c, d), and no over-

shoot in transitions P-D and D-P (Figure 4b, e). On the other hand, in

Figure 5, there is no overshoot in the responses.

b) In transitions, the antagonist muscle is nearly silent. The inhibition

of the flexor muscles (ATM) is quite noticeable in Figure 4(c, e, f).

c) The correlation between the derivative of the foot torque and the

integrated EMG is apparent in all transitions (Figure 4). This is

indicative of a predominantly damped system in an isometric effort

tracking condition.

4. Isotonic - Unpredictable

The averaged responses for the transitions in isotonic unpredictable

step tracking are shown in Figure 6. The velocity and acceleration were

obtained by digital differentiation of the averaged foot angle response. Figure
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7 shows a single response in the transition N-D. From this data the following

observations can be made.

a) Large overshoot in transitions P-N and D-N (Figure 6a, f), small

overshoot in transition N-D (Figure 6d), and no overshoot in transitions

P-D, N-P, and D-P.

b) Good correlation between the EMG of the active muscle and the

velocity, except transition N-D.

c) The bang-bang nature of the system is found in transition N-D as

shown in the single response (Figure 7) and also in the average response

(Figure 6d).

/FA

O.ISEC

Figure 7. Isotonic Foot Angle Tracking of Unpredictable Steps.

Single Response in the Transition N-D. Scales.

FA 0.246 radians/unit, EMG 2 v/unit (arbitrary

gain)

IV. DISCUSSIONS

These experiments were conducted to see if the human motor system

in step tracking situation (predictable and unpredictable inputs, position

and torque tracking) behaves as a bang-bang servo. Smith (4) observed that

the responses of the human operator moving a large inertia were typical of

on-off maximum-effort decision controls, i.e., maximum-effort, minimum-

time, optimum bang-bang servo. As noted by Smith in the summary of the
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paper, he reached this conclusion on the basis of the "best" response which

any individual was capable of achieving and not considering the average

response. It should be noted that the actual responses were not published

in this paper. Figures 1, 2, and 3 of this paper show how a bang-bang muscle

servo should behave. Also, it should be noted that no EMG measurements

were made in that study. It is quite probable that the limited force output

muscle servo seems to behave like a maximum-effort bang-bang servo in

some individual responses due to a very large inertia load.

Navas and Stark (9), based on their step response data under isotonic

conditions, have claimed that the time optimal "bang-bang" model is valid

only for predictable steps. No EMG or force measurements have been

reported in their paper to substantiate their claim. In Figure 33 of their

paper, some possible types of ballistic movements were discussed which

are purely hypothetical.

In our experiments, only in one case, isotonic unpredictable tracking in

transition N-D, have we evidenced the "bang-bang" nature of the system. It

must be pointed out that the three experiments being discussed here were done

on three entirely different types of motor system. Smith studied the horizontal

movement of the forearm (mainly concerned with the biceps and triceps mus-

cles), Navas and Stark studied the wrist rotation (mainly concerned with

supinator and pronator teres muscles), and our experiments were done on

the ankle flexion system which is concerned with gastrocnemius-soleus and

anterior tibial muscles. These three systems may very well have different

characteristics because of the different primary roles of these systems.

The predominant "control-law" indicated by the experiments we have

conducted is a unilateral activation of the appropriate muscle with some lead

compensation. The antagonist muscle is simply turned off and not used as an

active brake on the action, with one exception as noted.
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16. An Evaluation of a Pilot Model Based on Kalman

Filtering and Optimal Control

Rodney D. Wierenga

Lear Siegler, Inc.

ABSTRACT

A pilot model based on Kalman filtering and optimal control is given which

because of its structure provides for estimation of the plant state variables,

the forcing functions, the time delay, and the neuromuscular lag. The inverse

filter and control problem is considered where the noise and cost function

parameters are found that yield a frequency response which is in close agree-

ment with that found experimentally. A good correspondence with sinewave

tracking is shown including "eyes closed" tracking. In addition, measure-

ment noise and time delay are shown to account for the differences in

frequency response caused by two vastly different displays in a tracking

task and provide insight into possible ways of evaluating displays.

i. INTRODUCTION

In a broad sense, a manual control system is one in which a human operator

attempts to control a plant by varying selected control variables of the plant
given information about the system state. This function is shown schematically
in Figure 1. The control variable inputs to the plant are provided by ma-
nipulators while the sensory inputs to the man are provided by displays and
other sources which give information about the condition of the plant, the
manipulators, the man's own output characteristics, and the input forcing
functions. The plant may have external random forcing functions in the form
of disturbances or, on the other hand, the operator may generate his own forcing
functions internally.
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FIGURE I. MANUAL CONTROL SYSTEM SCHEMATIC DIAGRAM

The interface between the man's sensors and his outputs as shown in Figure 1

can be lumped into a data processing block. This block includes such operations

as perception and the transformation of sensed information into a usable form so that

it can be used in the control task. It provides the feedback paths involved in the

arm dynamics, and it includes the compensation that the man provides attempting

to cause the man-machine system to perform as desired (e.g., so that it is stable
with minimum error).

2. THE MODEL

2.1 GENERAL FORM

It is generally agreed that noise is present in the human operator in a

control task [1,2]. Whether this noise exists at his input or output, or both,

has not been completely established [3]. Many modellers have considered the

human operator as a controller, but none have given sufficient attention to the

perception mechanism at the interface between the displayed information and the

control operation. A model of this mechanism is required to transform the raw
displayed information into a usable form. It is therefore postulated in [4]

that in a control task, this transformation is performed in the presence of noise,

as an optimal time-varying linear filter (a Kalman filter). It is further postulatec

in [4] that in performing the control function, man uses the resultant estimates

of the state of the system as an optimal time-varying linear controller. The data

processing block in Figure 1 accordingly includes an optimal filter and an optimal
controller.

It is assumed that optimal estimates are made of all of the state variables

of the system including those of the plant being controlle----d,those associated with

the forcing functions, and those associated with the man's own sensor and output

characteristics. (This is not a necessary assumption and further research may

prove this not to be the case, but it is assumed to be valid here.)
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To solve for the Kalman filter and the optimal controller which make

up the data processing block in Figure I, the system is rearranged into two

overlapping parts as shown in Figure 2. The human operator part remains the

same as in Figure I, while the a_g_nented plant contains everything but the
filter and controller. With this rearrangement, the filter and controilvr

can be found given all the characteristics of the augmented plant. The model

of the augmented plant is assumed to be in the form of linear, possibly time-

varying, differential and algebraic equations. Statistically defined inputs

(w and/or forcing functions) are included by "shaping" of white gaussian noise
G

through a f11ter modeled by a set of linear, possibly time-varying, differential

equations. The "measurement noise" v is assumed to be additive white gaussian
noise and all components of v are assumed to be present. (The linearity and noise

requirements can be relaxed somewhat but will not be considered here.)

The augmented plant dynamics model is

x = Ax + Bu + Dw, x(O) = x° (1)

AUGMENTED PLANT

[ .U.ANOP,,,AT_ I ,,_ 7 [p:,,o,.

I

L

T1

t i

FIGURE 2. BASIC BLOCK DIAGRAM WITH AN AUGMENTED PLANT

and the measurement vector is

y = Cx + v
where

E{v(t)} = Efw(t)} = E{x } = 0
O

E(v(t + T) v T (t)} = N6(_)

E(w(t + T) wT (t)} = _I6(_)

(2)

(3)

(4)

(S)
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and

x is the augmented plant internal state vector of
dimension n

u is the optimal controller output of dimension m

y is the measurement vector of dimension

v, w are uncorrelated gaussian white noise vectors

x is a gaussian random initial condition vector
o uncorrelated with v and w

A, B, C, D, M, N are, in general, time-varying matrices

5(_) is the Dirac delta function

The scalar cost function J minimized by both the filter and by the controller

is a quadratic function of the form,

11jtfJ=E _- o

where

(6)

E is the expected value operator

Q is a constant square symmetric positive semi-definite
matrix

R is a constant square symmetric positive definite
matrix

tf is the final time

As shown in [5, 6] for the discrete case, the Kalman filtering problem and

the optimum controller problem can be solved separately. First, consider the optimum
linear filter as developed by Kalman [4,7-11]. The estimate of the plant state vector
is

where

BRIBTK) ^x = - C - x + Ky, x(0) = x° (7)

^

x is the optimum estimate of x given y(_), o<_<t

^

K is the optimum linear filter gain matrix

K is the optimum linear controller gain matrix
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As given by Kalman, K is expressed by

K = pcTN _I

^

where P(t) i_ the covariance of [x(t) - x(t)] given y(_),
0 < T < t, and is determined by solution of the matrix Riccati
eq_at ion

= AP + PAT - pcTN-Icp + DMD T

(8)

(9)

with initial condition

 ((xo(xo
The output of the Kalman filter is the optimal linear estimate of the

augmented plant state vector and is used as the input to the optimal controller.
Given the state vector as input, the optimal control problem reduces to the regulator
problem. Using Pontryagin's maximum principle, the optimal control is

u = - R-1BT_ (11)

where K is obtained by solution of

+ KA +ATK - KBR-IBTK + Q = 0 (12)

backwards in time from the final condition

K(tf) = 0 (13)

A block diagram illustrating the solutions of the augmented plant, the
Kalman filter, and optimal controller is given in Figure 3. As indicated, the

human operator formulates a model that is nearly the same as the augmented plant
that he is trying to control. The basic difference lies in the inclusion of K and K.

f-

I I "

SOLUTION ^

I

I

I I

I I
I KALMAN FILTER AN{) OPTIMAL CONTROL.LER [

V

AUGMENTED PLANT

I
I

I

I
I

I

i
_.J

FIGURE 3. SOLUTION BLOCK DIAGRAM
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The first part of the model -- the time-varying filter -- uses the

sensed variables y which are corrupted by noise, and operates on them in

such a way as to produce time-varying estimates of all of the state variables

of the augmented plant. These estimates are optimal estimates (if the noise

is gaussian), in the sense that the variance of the estimation error is

minimized.

With this formulation of the problem, compensatory as well as pursuit

displays can be handled. In the compensatory task, the value of the displayed

error as sensed by the human operator appears as a single variable in y. In

the pursuit task, the forcing function and plant output, as sensed by the human

operator, each appear as a variable in the vector y. The difference between them,

or error, is determined in the controller using estimates of each variable as

given by the filter.

2.2 A SIMPLIFIED MODEL

The formulation as given above is very general and provides a

framework for including factors in the human operator about which

very little is known. So that the model can be studied in terms of
available data and in terms of some of the characteristics of the

human operator that have already been established, it is reduced to

that shown in Figure 4. This basic model is used in the remainder

of the study. As indicated, a compensator task is used where the

display characteristics are ignored. The operator sensor (except for

the noise) and output characteristics are lumped into a time delay

and neuromuscular lag. Also included in the neuromuscular lag are

the manipulator characteristics which are assumed to be independent

of the plant. The noise inputs v and w I are included to represent
man's measurement and output noise, respectively. The noise input

w_, as explained more fully later, is included to represent an internal
z

forcing functlon.

F

HUMAN OPERATOR w|

OPTIMALCONTROLLER

Wl

wf

I ÷ I
v

1: i

AUGMENTED PLANT

I

I
FORCING J

I FUNCT ONS I

I uc _+

NEURO'  ,CO'AR

' 11I I
I

I

I

J

FIGURE 4. SIMPLIFIED BLOCK DIAGRAM WITH AN AUGMENTED PLANT
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3 EVALUATION FOR TIME STATIONARY .......... ,e• _Vl_lJl I .I. VI'_o

The objective of this section is to evaluate the model in a single-

axis compensatory task by showing how well the model results match selected

data generated experimentally by McRuer, Graham, Krendel and Reisener in

[1], and Wasicho, McRuer and Magdalene in [12]. The experimental data are

in the form of open loop frequency response plots for the linearly correlated

portion of the response. Power spectral density plots for the remaining

power (the remnant) are also considered.

McRuer et al. state in [I] that nonstationarity is a large part of the

remnant. Their Bode plots, however, are obtained by time averaging over a
complete run and therefore the nonstationarity during the run is eliminated.

Assuming the model can properly include this characteristic, an "average"

of the time response is required to obtain a time stationary Bode plot. It

is assumed in the results presented here that the noise can be selected so

that the covariance matrix P reaches a steady-state condition which corresponds

to "the average" Bode plot.

3.1 MODEL SOLUTION

A time stationary model solution results when:

i) the augmented plant is time stationary

2) the noise is time stationary
3) the initial time period required for the P matrix

to reach an essentially constant value is ignored
so that the filter gain matrix K can be considered
to be a constant

4) the final time period required for the control matrix

K to reach an essentially constant value (when solved

backwards) is ignored.

Bode plots for the model of the human operator and plant under these conditions

were generated by a digital computer program as described in [4].

The particular model used for the augmented plant is shown schematically

in Figure 5. Three plant transfer functions were investigated. These are:

(1) a constant gain plant, Y = 1, (2) an integrator plant, Y.c = 1/s, (3) a
first order unstable plant,CYc = 5/(s-2).

No,,,
I_]$HAFING ¥TIME NEUROMUSCUL AR

U _ml_DI[L &Y LAGSll _' _ _ CX O ISPLAY 4._

FORCING
FUNCTION

$HAPI ttG

-,@

FIGURE S. AUGMENTED PLANT FOR TIME STATIONARY CONDITIONS
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Theneuromuscular lag was approximated by a first-order lag with a
time constant T. of 0.3 seconds. The time delay was approximated by a

first-order Pad_ approximation with a time delay T of 0.I seconds.

Ranges of T. from 0.I to 0.6 seconds and ranges of • from 0.06 to 0.15

secondswere consldered in [4].

As shown in Figure 5, there are three gaussian white noise inputs.

The measurement noise v is a single dimensional input defined by (3) and (4)

while process noise terms w. and w_ form the two dimensioml vector w defined
. L

by (3) and (5). The varzab_es v, Wl, and w2 as assumed in the model formulation
are orthogonal with

R (T) = N6(T) = n6(T)
VY

I 1mll 0

0 m22

(14)

6('c) (15)

Rvw(% ) = 0 (16)

(Note that with a model display gain of one, the units of the plant output,

the shaped noise from w. and w^, and the noise v can be thought of in terms
• ° •

of znches of dlsplay mo_zon..)

The data in [1] and [12] were obtained using the sum of ten sin_aves
summarized in Figure 6. This forcing function was approximated by gaussian
white noise band-limited by a third-order lag filter with corner frequencies
centered around the last sinewave at the higher power level• Figure 6 shows
the magnitudes squared of each of the sinusoidal components of the data forcing
function superimposed on the third order shaping function• To illustrate the
fit of %he approximation, the low frequency portion of the shaping is made to
coincide with the lower frequencies of the given forcing function• The variance
of the model forcing function was adjusted by m,, in (15) so that it was the
same as that used to obtain the data in [1] an_l[12]. Under these conditions

2
oi = 0.468 mll (17)

and since in the data used from [i], and [12]

2
o. : 0.25 in2 (18)
1

the required value for mll becomes

0.25 _ 0 534 (19)
mll = 0.468
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Experimental results in [13] for a constant gain plant show that

the sum of sinewaves with power levels arranged along the curve of a

third-order lag, and, the rectangular arrangement used in [i] (Figure 6)

both yield essentially the same transfer function for the operator. The

experimental differences between third-order shaping and the rectangular

shaping for other plants are not given in [13] and are assumed to be small.

(They may not be, however.)

Referring to Figure 5, the noise inputs to the measurement y consist

of a pure gaussian white noise term v and a gaussian white noise term w 2
shaped by a pure integrator of the form

1
G D(s) = _- (20)

The noise term v corresponds to measurement noise as generated, for example,

by the retina of the eye. The input w^ shaped by GD is viewed as a "random
,1 1, f, " '!drift rate or random walk or searching which is applied and estimated

by the operator. As utilized, this input is an internal forcing function

injected at the display. Thus, it is postulated that the human operator

supplies this input (e.g., at the input to his neuromuscular system) in such

a way that it appears as a random drift rate on the display. The operator is

assumed to be randomly "testing" the system by applying a random rate at the

output of the system.

It is further assumed that the mean-squared value of the displayed variable

plus that of u is minimized so that the cost function is

J=E + (21)
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3.2 RESULTS

The general problem is: given models of the plant, the neuromuscular

lag, and the time delay; what noise and cost function are required to match

experimental data? This might be called the "inverse optimal filter and contro

problem." More specifically for the case considered here, the problem is:

given simple first order models for the neuromuscular lag and time delay

with TN = 0.3 and _ = 0.i, and given the forcing function defined by (19)

and Figure 6; what values of n, r, and m22 are required to metch the model
results to the experimental data in [I] and [12] for the pl,_:_s Y = I,

Y = i/s, and Y = 5/(s-2)? Bode plots showing selected matches _or these

t_ree plants ar_ given in Figures 7, 8, 9, and I0.

The model plots correspond to the complete man-plant combination with

a unity feedback open-loop transfer function G(j_). The solid and dashed

lines are gain and phase, respectively.

PLRNT IS YC=!
TN=0.3 - TAU=O.! - WO]=2.4 - ND2=2.5 - W03=2.6

NI=500 - 81=20 - MII=0.534 - M22=0.008
FOBWRBD LOOP FBEQUENCTBESPON5E

12-q-67 8

_r

WITH DRIFT

\ WIT.OOT%R,¢T .

....................................-....
_WITH DRIFT "_" "':_:_'1,_,...

...............................................................................................:_-%..................
,%

GAIN
PHASE ..........

re
FBEOUENC'r(BFIDISEC}

7_

_r

FIGURE 7. MATCH FOR THE CONSTANT GAIN PLANT
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Superimposed on the model results are the experimental data at the ten

forcing function frequencies. The ranges shown are + i_ ranges around

the mean where the mean is indicated by the symbol. --The data given by the

circles (@) are from [I] while those given by tim triangles (_) i_ Figure 8

are from [12]. The matching was achieved heuristically varying n, r, and

m22.

Figure 7 shows the model results with and without the drift provided by

w_. Comparison shows that drift provides a low frequency gain increase and

a_ditional low frequency phase shift, and consequently provides a better
match with the data.

Figure 8 shows how pilot training might be accounted for by the model.

The data from [12] are for one of the nine pilots used in [I], but after

much more training. Detailed comparison of Figures 7 and 8 shows that the

gain is higher and the phase shift is less in Figure 8. This is accounted

for in the model by simply reducing the measurement noise. (It might be said

that his perception ability was improved.) The noise term needed to match

th_ data in [I] is n -I = 500 while that needed to match the data in [12] is

n = 2000. As indicated in [4] the gain increases can also be accounted for by

decreasing the cost r associated with the control action. The change in phase

shift at mid-frequencies, however, is in the opposite direction and therefore

r is not as appropriate a parameter to change. The remaining parameter of

the three available to account for the difference is m2^ , but as indicated

above and in more detail in [4], m22 primarily affects _he low frequency
characteristics.

Figures 9 and I0 show the matches for the plants Y = I/s and Y = 5/(s-2).

The gain matches for both are very good. The phase matc_ for the pla_t Y = I/s

is good, but not as good as desired, c

The values chosen for n, r, and m^^ to match the data in [1] for the three
gz

plants are summarized in Table 1. There seems to be little correspondence

between the parameters required for the models. However, consideration of

Table i. Parameters for model evaluation.

PLANT n r
m22

I 1/500 1/20 0.008

i/s 1/5000 1/300 0.08

5/(s-2) 1/5000 1/2 0.00135

the total noise at the input to the man gives some agreement as explained below.
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3.3 NOISE VS. REMNANT

Since v and W2s
spectrum of the sum Is

[W2s(_ ) = GD(_)w2(_) ] are orthogonal, the power

1

cv+w2 s (m) = cVV (_o)+ --_m Cw2w2 (o_)
(22)

and

_+ _2 "2
_v+W2s(m) = 2n J_ n ]

Normalizing by the variance of the forcing function

(23)

-i 2
v+W2s = 4 27 n--n-- (24)

2
o. mll jm
i

Note that (24) only depends on the ratio of _ , and as shown in [4] for a

slightly more general case, so does the solution of the model. The noise

power spectrum injected at y is given by (24) and is plotted for the three
plants in Figure ii. Some of the remnant data in [i] and [14] are given as

power spectra injected in the same way, and are also shown in Figure Ii. Both
the model results as given by (24), and the data from [i] and [14] are normalized

by the variance of the forcing function. The dashed line is the remnant data for t_

plant Yc = 1 as adapted in [14] from [15]. The data indicated by the key of the
figure are from selected runs for the plants Y = I/s and Y = 5/(s-2) as re-
ported in [i]. The data for the plant Y = 1 Ere taken fro_ the average of
several runs while those for the other t_o plants are from single runs.

As shown in Figure ii, there is general agreement between the experimentally
measured remnant and the noise used in the model. However, only the noise

and remnant for the plant Y = 1 agree closely. According to [I], the plant

Y = 1 is the only one wher_ noise is the majority of the remnant, where the
C

slgnificant part of the remnant for the other plants is nonstationarity. Thus,

it might be concluded that since the noise for the plant Y = 1 matches the
remnant data best, a noise input that yields the desired B_de plot is not

closely related to the remnant when nonstationarity is important. Consequently,
the noise needed to obtain a steady-state P which will give the desired Bode

plot is not the noise which will be equivalent to the remnant. On the other

hand, the forcing function used in the model is not identical to that used

to generate the data (Figure 6), and may have a significant effect on the noise

required to generate the model transfer function. Also, the remnant is on the
order of 5 percent of the total power and the data may not be accurate. Neverthe-

less, it appears as though the noise and remnant are not equivalent. More

experimental data are required, however, with forcing functions that can be
exactly included in the model to sufficiently support this conclusion.
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Though it is theoretically possible to use the _xact expression

for the ten sinewaves as the model forcing function, such a represen-

tation requires twenty state variables and is prohibitively large for

the present cemputer program. If the exact expressions were used, it

is possible that the P matrix would not _onverge, even in the four
minute run time considered in [i], and provide the necessary model

nonstationarity. (The sum of sinewaves would "appear random" in the

model although the estimates of each would be improving with time.)

To obtain a time stationary transfer function, it might be necessary,

however, as with experimental studies, to use a ratio of cross-spectral

densities. Under these conditions, the noise used to generate a Bode

plot to match experimental data along with the nonstationarity that

would be present might be closer to the remnant. Further experimental

and model studies are required.

2c , +I_ i_i:_.--.+_ --: _: ::: '_ ...... _!'_,,.

_ !_i:_,i::_i:::____i:!:::_i_.] ::_:__--.:....... :::-:: ......:_r::.._..i::_:=

O. I 1.0 I0.0

i_, -RAD/SEC

FIGURE II. A COMPARISON OF THE REMNANT WITH MODEL NOISE
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4. SINE-WAVE TRACKING

One of the important features of this model of the human operator

is that it includes precognition. That is, it accounts for man's ability

to predict (a better term is estimate) the characteristics of a forcing

function, for example, and to take advantage of this knowledge, so that a

better or higher level of control is accomplished. This characteristic

of man can be demonstrated by means of sinewave tracking as shown in

Figure 12. Once the operator has tracked the sinewave for a short period

of time, he will have essentially zero time delay. Furthermore, he can

close his eyes, eliminating the error signal, and still continue to track.

FIGURE 12. SINEWAVE TRACKING BLOCK DIAGRAM

In this section, the results of a sinewave tracking experiment are

given and related to the results of the model. These results are also

related to the experimental work reported by Pew et al. in [2]. In addition,

tracking with the "eyes closed" is considered both experimentally and with the
model.

4.1 EXPERIMENTS

Experiments were performed with the aid of an analog computer using

a sinewave forcing function with a frequency of 7.159 rad/sec and a half-

amplitude of 1.414 volts. A five-inch CRT (cathode ray tube) display was

used with the gain set at 2 cm/volt. The controller was a hand operated

force sensing device operated around its pitch axis, with an output of 0.003
volts/gram at a 3 inch moment arm. The displacement of the stick was approximately

0.005 mm/gram. A two minute run length was used.

A single subject was trained until his mean-squared error and integrated-

absolute error reached a relatively consistent level from run to run. The

first 14 seconds of a typical recording after training is shown in Figure 13
(i, m, and e are defined by Figure 12). The measured mean-squared error of

the complete run corresponding to this figure normalized by the measured mean-

squared error if the operator did nothing was .083/1. The measured normalized
integrated-absolute error was 2.32/8.78 = 0.265. The results of a corresponding

experiment reported in [2] yielded a normalized integrated-absolute error of

approximately 0.32. Thus, the results are reasonably close. As shown, in

general, i(t) and m(t) are in phase, indicating that precognition is present. At
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time zero, however, there is a delay of approximately 0.15 seconds

before the subject starts to track, indicating no prediction ini-

tially. Also note that m(t) and e(t) contain frequencies (both

higher and lower) other than the forcing function frequency. This

illustrates the presence of noise. Also indicated is that the out-

put m(t) is almost always of smaller amplitude than i(t), implying

that the open loop gain is not high. The first part of e(t) appears

to consist primarily of the forcing function frequency. The amplitude

appears to start out large and essentially damp out after about 4
seconds.

Figure 14 shows the results when, after tracking for six

seconds, the operator closed his eyes. Thus, for t>6, the operator

performed as an open loop system without an error signal. The results
show, however, that the operator continues to track the sinewave, but

with increased error. The operator apparently operated from a "built-

in" source of information "learned" during previous operations.

4.2 MODEL RESULTS

The augmented plant used as the model is shown in Figure 15. This
block diagram can be expanded as shown in Figure 16.

W

SHAPING

TIM£ _ V

DELAY _ NEURO- I

+ [ MUSCULAR |
I -- T--_- S't- I I T_[_ LAG PLANT DISPLAY _+

FIGURE 15. AUGMENTED PLANT FOR SINEWAVE TRACKING
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As in Section 3, the neuromuscular lag time constant and the time

delay were, respectively, 0.3 seconds and 0.I seconds, and as with the

experiment, the sinewave forcing function frequency was m = 7.159

and its half amplitude was a = 1.414. s

A gaussian white noise source w shaped by a first-order lag with

a corner frequency of _ = 4 rad/sec was applied at the input to the

neuromuscular system, aIn addition, a gaussian white noise input v

uncorrelated with w was added to the measurement y. Since v and w are

white noise, their covariances are

E {v(t + _)v(t)} --n_(_) (25)

E {wit + T)w(t)} = m_(_) (26)

The cost function matrices Q and R were chosen to minimize the sum of

e2 and ru 2 as expressed by (21).

The parameters n, m, and r were selected so that the model gives

results consistent, insofar as possible, with the experimental results.

The values selected for these parameters were

n = l/Z00

m= 0.25

r = 1/50

]
'" X4

U_-_+ Xs -- ÷ X3"ffl

¥

FIGURE 16. BLOCK DIAGRAM FOR SINEWAVE TRACKING
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Time solutions for the complete sinewave tracking mod_i as described

above, were realized on an analog computer. The solution for the

optimal control law was assumed to be constant while that for P was

time~varying.

Figure 17 is a partial run of the model solution showing the

first 14 seconds. On this complete 2 minute run the measured mean-

squared error divided by the measured mean-squared error, if no control

were applied, was 0.094/1. This agrees reasonably well with the value

of 0.083/1 obtained for the real human operator. In addition, the

normalized measured integrated-absolute error was 0.265/0.936 = 0.283.

This also agrees quite well with the value of 0.265 obtained for the complete

experimental run and with the value of 0.32 obtained by Pew et al. in [2].

Visual comparison of Figure 17 with Figure 13 indicates that "generally"

the same frequencies and characteristics are present. Note that, as in

Figure 13, the forcing function appears to be predominant in e(t) for

the first 4 seconds. The initial time delay is approximately 0.I

seconds.

Figure 18 shows the solution when the "eyes" of the model were

91ose d _t six seconds by setting C = 0 in the solution for both P and

[see (2),(7),(8), and (91]. Note that after the "eyes" are closed the model

continues to track, using the best estimates of the variables in x, although

the error has obviously increased.

4.3 FREQUENCY RESPONSE

Figure 19 is a Bode plot of the steady-state man-plant transfer function

while tracking the sinewave as obtained from the model, Note the high gain

rise and sharp spike in the phase angle in the neighborhood of the forcing

function frequency. Inspection of the printout for the plot shows that the

forcing function frequency is located between the high and low gain spikes

where at the sinewave frequency

= 18.88 db 2_.36 degrees (27)GIO(J7. 159]

Since the phase shift at the forcing function frequency is nearly zero,

there is essentially no time delay. This result agrees with the general

characteristics in Figure 13 and with the statements of Pew et al. in [2],

that no time delay is observed when a sinewave is tracked.

The results given in Figure 19 correspond to P(t¢) when the solution
for P was ended at t_ = 10 seconds. The results when _he solution for p was

.
termlnated at 1 second and at 35 seconds were also obtained. Comparison

indicates that, as the solution for P converges, the gain and phase characteristics

become better-and-better "tuned" to the forcing function frequency. The gains

and phase angles at the forcing function frequency for the runs terminated

at 1 second and 35 seconds were, respectively

(j7.159) = 18.97 db _.06 degrees (28)G 1

G35 (j7.159) = 18.46 db _.74 degrees (29)

Comparison of (27), (28), and (29) shows that the gain and phase angle at the

forcing function frequency remain essentially the same as P converges and the

time delay remains essentially zero.
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4.4 ERROR POWER SPECTRUM

Consider the power spectrum at e. The variance as shown in [4] is

2
= 0.07238 ÷ 0.0104 (30)

e

= 0.8278 (31)

The power spectrum at the error e, normalized by this variance, is

plotted in Figure 20 along with data points adapted from [2]. (The

data in [2] are in terms of e, and were adapted by first multiplying

@o.(_) by I/m 2 , and then normalizing by the area under @..(_)/_2
• . . ee

o_ained by graphical approxlmatlon.) There zs good general agreement,

although a sharper high frequency break in the model results would improve

the match. This could probably be done by using a higher order corner

shaping the noise w (see Figure 151.
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5. DISPLAY EFFECT

The effect of changing the type of display on the transfer function

of the human operator is now briefly considered by comparing experimental

results with the model results. The combination of parameters required to

match the model results with the experimental results provide insight into

possible ways of evaluating displays.

5.1 EXPERIMENTS

Experiments were performed using an analog computer and three operators

in a simple "pitch axis" compensatory task as shown in Figure 21.

FIGURE 21. DISPLAY STUDY BLOCK DIAGRAM

Two vastly different displays were considered. The first was a 5-inch

CRT (cathode ray tube) and the second was a DVM (digital voltmeter) where a

(+) or (-) sign and two digits were displayed. Since with the DVM, the operator

must read the sign of the displayed variable as well as read its numerical value,

it was much more difficult to use.

With the CRT display, a vertical display motion was used with a gain of

2 cm/volt. A large dot with a diameter of approximately 3 mm was used as the

moving index. The zero position was indicated but no numerical scale was provided.

The background grid of the CRT, however, was visible. The operator was expected

to judge the error (including sign) by the relative distance between the dot

and the zero position. A "fly to" sign convention was utilized.

The DVM gain was i0 volts/volt. The display used provides up to I000

readings/sec with no sign change, and up to i00 readings/sec with a sign change.

Consequently, the maximum time delay was 0.01 second. This is small compared

with the human operator time delay and therefore it was expected to have an

insignificant influence on the experiment. In terms of the CRT display, a plus

voltage on the DVM corresponds to the dot above the zero position. Accordingly,

a plus voltage on the DVM required a pulling action of the controller. The

same force sensing controller was used as was used in the sinewave investigation.
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The gain in this case was 2.49 volts/deg and the force gradient was 1.62

Ibs/deg.

The plant was a simple constant gain with a transfer function of

Y = I. The forcing function was the sum of ten sinewaves with frequencies

a_d amplitudes as given in Table 2. (The frequencies were the same as those

used in [I].) The amplitude characteristic corresponds to that of a pure

second-order lag with a corner frequency at 2.54 rad/sec, and the variance

of the forcing function in terms of inches of display motion was

2 2
o. = 1.7 in
1

Table 2. Display study forcing function.

2
_n - Rad/sec ¢i (mn)-db

i in inches

ml = 0.157 -2.11

m2 = 0.262 -2.17

m3 = 0.393 -2.28

_4 = 0.602 -2.56

_5 = 0.969 -3.26

m6 = 1.490 -4.64

m7 = 2.540 -8.10

_8 = 4.030 -13.03

m9 = 7.570 -21.00

_I0 = 13.800 -31.70
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The three pilots were engineers without formal pilot training

who, before data was taken, were trained to use the two displays on

120 second practice runs. The choice of which display to use was

made on a non-systematic basis. The practice runs were accomplished

over a one week period with up to I0 runs a day. The operators were

instructed to minimize the displayed error and proficiency was measured

during the run by their mean-squared error. Once the MSE reached a

consistent low level (after 20-30 runs per display), the operator was

considered to be trained.

Each recorded experiment extended over a 240 second period with

up to eight runs per eight hour day with two or three in one sitting.

The choice of display again was non-systematic. Ten runs for each

operator with each display were made.

The results of the experiments are given in Figures 22 through 29.

At each of the ten frequencies, the circle (®) indicates the mean value

and the bars indicate the + Io band around the mean. Figures 22, 23,

and 24 are the results for operators I, 2, and 3 respectively when using

the CRT display, while Figure 25 shows the results for the three operators

combined using the CRT display. Figures 26 through 29 are the corresponding

results using the DVM display. In general, with the DVM, the gains are

lower, the phase angles are more negative, and the run to run variability

is larger, especially for operator #3 and at high frequencies for all three

operators. The larger h_gh frequency variability is probably due to the

small amplitude of the forcing function at these frequencies.

5.2 MODEL RESULTS

A time stationary model was used which was the same as that described

in Section 3 except the forcing function shaping was second order instead of

third order and the time delay approximation was second order rather than

first order. Thus, corresponding to the forcing function used in the display

experiments, white noise shaped by a second order lag centered at 2.54 tad/see

with a variance of o_ = 1.7 in 2 was used as the model forcing function. Also,

it was found that toXmatch the DVM experimental data a longer time delay was

needed in the model which, in turn, because the first order Pad6 approximation

corner would be well back in the frequencies of interest, a second order

approximation was needed. Although it was not necessary with the CRT data,

the second order time delay approximation was used with both the CRT and DVM

matches to have a common base for comparison.

The model results selected to match the CRT experimental data are the solid

(gain) and dashed (phase) lines shown in Figures 22 through 25. The parameters

to give these results are summarized in Table 3. Detailed comparison of the

experimental data reveals that there are slight differences in the gains and phase

angles from operator to operator and correspondingly it was necessary to have

slight differences in the parameters needed for a match. The operator

differences are accounted for by different weightings of the control (r) and

by different amounts of drift (mll) . In general, the matches are very good.
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Table 3. Model parameters for CRT match.

OPERATOR NUMBER

PARAMETER

1 2 3 1,2,&3

1/n

1/r

mll

T

70

200

0.4

0.I

70

200

0.8

0.I

70

50

0.5

0.I

7O

150

0.8

0.i

The model Bode plots selected to match the DVM experimental
data are shown in Figures 26 through 29 and the parameters giving
these results are summarized in Table 4. As with the CRT data there

are individual differences in the results for the three operators
and consequently differences in the matching parameters are needed.
The matches are good but not as good as those with the CRT.

Table 4, Model parameters for DVM match.

OPERATOR NUMBER

1,2,&3

PARAMETER

1

1/n 8

1/r 200

m22 0.4

T 0.5

2 3

5 5

200 50

0.8 0.5

0.5 0.I

5

150

0.8

0.37

Comparison of the DVM experimental results for Operators 1 and 2 given
in Figures 26 and 27 with the results for Operator 3 in Figure 28 indicates
that Operator 3 has a considerably different phase angle at high frequencies. This
implies a much shorter time delay for Operator 3 as was verified by the time
delay needed in the model (Table 4). Investigation of the "flying" technique
of each operator revea_dthat Operators 1 and 2 used a "proportional control"
while the third used a kind of "dither" control. The first two made corrections

based on the sign and size of the displayed voltage while the third built a
substantially constant frequency dither into his control. He looked at only
the sign of the voltage and attempted to produce + and - signs on the display
as rapidly as he could and still have what he considered good control. This
technique as compared with the proportional technique produced less high
frequency phase shift. Apparently, Operators 1 and 2 needed more time to think
about the magnitude of the displayed voltage and consequently produced a longer
time delay.
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Comparison of the CRT and DVM parameters in Tables 3 and 4 shows
that a difference in measurement noise coupled with a difference in the

time delay accounts for the difference in the displays. The noise might

correspond to reading difficulty while the time delay might correspond

to the amount of mental processing needed by the operator. The results

with Operator 3 indicate that a great deal depends on the operator's

technique.

In conclusion, an ordering of the two displays has been accomplished

where greater noise and time delay are associated with the display that

is more difficult to use. Other displays could be classified in the same

way and the comparative usefulness of each in a control task could be evaluated.
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17. An Optimal ControlModelof Humanzsunav,u,"-L-'"-'*

David L. Kleinman, Sheldon Baron,

and William H. Levison

Bolt Beranek and Newman, Inc.

ABSTRACT

Application is made of optimal control and estimation theory to problems in

manual control. By assuming that the human is "optimal" in some sense, a

model is developed for human operator behavior which is capable of accurately

predicting task performance, describing functions and all power spectra. The

model is described in detail and its application is made to three basic compen-

satory tracking tasks.

I. INTRODUCTION

The great majority of modern control theory applications has been made in

automatic and computer control contexts, usually as they pertain to industrial

processes, spacecraft and missile systems, network problems, etc. Until

quite recently, there have been relatively few attempts to apply state-space

techniques and the tools of optimal control and estimation theory to the study

of man-machine systems. Thus research in manual control has, for years,

labored under the limitations of classical servomechanism theory, especially

as regards the study of multi-variable, multi-display systems. 1,2

This research represents an integrated, systematic attempt at applying

optimization and estimation theory to the wide class of manual control situations

in which the plant dynamics are linear. The basic assumption underlying our

approach to manual control is that the well-motivated, well-trained human

operator behaves in a near optimal manner subject to his inherent limitations

and constraints, and his control task. Although the notion of the optimality of

the human operator is not new, 3,4 its full potential in developing models of

human control behavior has only started to be realized. 5-7 A control theoretic

approach is capable of treating multi-input, multi-output systems in a single

conceptual framework, using tools naturally suited to the analysis of complex

multi-loop, man-machine systems.

* This research was supported by NASA-Electronics Research Center under

Contract NAS12-104.
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In this paper it is shownthat by using modern control concepts, a human
operator model can be derived which is capable of predicting most of the
standard experimental measures of humanbehavior in tracking tasks. The
model canbe used to predict task performance, humancontroller describing
functions, remnant and power spectra, and, also, to predict visual scanning
behavior. 7

Mathematical representations of some basic human operator limitations 8' 9, 13
are discussed in SectionII. Sections III andIV contain the mathematical
developmentof the model. The method onewould use in its application is out-
lined in Section V. Finally, three simple, but basic, human operator tracking
tasks are analyzed in Section VI. Comparison is madebetweenvarious model
predictions and experimental datawhich conclusively show the potential and
usefulness of models.

II. REPRESENTATIONOF HUMAN LIMITATIONS

Any reasonable mathematical model of the humanoperator must include
within its framework the various psycho-physical limitations inherent in the
humanoperator. Our model contains time-delay, a representation of neuro-
motor dynamics, and'controller remnant as limitations. Possible nonlinear
or discontinuous controller behavior is not considered. This situation is
represented approximately by the linear model of Fig. 1. For simplicity,
the human manipulates a single control u(t); he is displayed one or more
variables

y(t) =col[Yl(t),Y2(t),...,Y (t) l.- m

Visual scanning is not considered herein. (For a control theoretic treatment
of scanningbehavior see Baron and Kleinman. 7)

The human's control characteristics are considered as the cascadeof three
linear operations: a pure time delay, an equalization network, and some
equivalentneuromuscular dynamics. In Fig. 1, the time delays associated
with visual, central processing and neuromotor pathways havebeen combined
and conveniently represented by an equivalent perceptual time delay _. The
equilization network H (s) represents the meansby which the subject attempts
to optimize his control strategy to match a given control situation. The
neuromuscular dynamics canbe approximated by an adjustable first-order lag
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1
Hn(S) - T__s+ 1

iN

(i)

More complex forms for H (s) are certainly possible. 8
n

OBSERVATION MOTOR
NOISE NOISE
vy(t) Vu(t)

DISPLAY I COMMANDED I

VARIABLES I CONTROL I

- -  ou uz z,o NEUROMUSCULAR
DYNAMICS, Hn(S)

Figure 1. Simplified Model of the Human Controller in a

Multivariable, Single Control Tracking Situation

CONTRO
OUTPUT
u (t)

Observation noise and motor noise are our representation of remnant (i. e.,

the component of human response that is unpredictable in other than a statisti-

cal sense). They are shown in Fig. 1 and have been discussed at length in

Levison et al. 9 In this model an "equivalent observation noise" vectorvy(t)
(which might represent the effects of random pertubations in human response

parameters or random errors in observing the displayed quantities)* is added

to y(t). The perceived signal

y_p(t) = y(t-l") + V_y(t-T)

is processed by H(s) to yield the "commanded" control Uc(t ). A "motor noise"

Vu(t ) (which could also represent errors in executing the intended control move-

ments is added to Uc(t ) and the resultant sum is operated on by Hn(S ) to provide
the control motion u(t).

Based on recent studies of controller remnant obtained under foveal viewing

conditions, 9 it is assumed that the injected noise processes Vy(t) and Vu(t )
arise from underlying multiplicative noise processes of the form

*It is unrealistic to ascribe v_ or v. to any one cause alone. They are merely
--y tt

intended as lumped represen_tions of inherent human randomness.
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Vyi(t) = _i(t) • Yi(t) ; i = 1,2,...,m (2a)

Vu(t) -" _u(t) • uc(t ) (2b)

The following important assumptions are made concerning the observations and
remnant noise processes. 9

i

a. Only multiplicative noise terms are important in the production of

controller remnant when the display is viewed foveally, provided

the display and control gains have been designed to minimize thres-

hold and saturation effects.

Do The multiplicative processes {_i(t)} , _u(t) are independent white

gaussian noises. They are functionally independent of control

system parameters in all respects. Thus, these processes are assumed

to arise from some basic physiological noise sources internal to the
human.

: C. The controller can extract position and rate information from a single

display indicator, but he cannot extract higher derivatives. Separate

observation noises are associated with the position and rate estimates.

In order to avoid mathematical subtleties associated with multiplicative

noise processes, it is assumed for analysis purposes that the injected noises

_vy(t) and Vu(t ) are independent gaussian white noises with autocovariances:

E{Vyi(t) Vyi(_)} = Vy i ' _(t-_) = Pi ' E{Yi 2} ' _(t-_) (3a)

E(vu(t) Vu(_)) = V u 6(t-g) = Pu E(Uc2) • _(t-_) (3b)

Thus, the sources of remnant are referred to additive noises each of whose

covariance scales (with factor Pi) with the variance of the quantity to which

it is associated. (There are still some mathematical subtleties with this

approach which are mentioned briefly in Section III.)

In the next section, the above limitations will be incorporated into an optimal

control-theoretical framework.

III. MATHEMATICAL DEVELOPMENT

In this section precise meaning is given to the human operator's control
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objectives and a model is developedfor his resulting control characteristics.
The limitations discussed in the preceding section are incorporated within the
model. However, we defer until SectionIV the inclusion of motor noise.

The human operator's basic task is to control, in some prescribed way, a
dynamic system. Several system outputs may be of concern andthe operator
has a single input* through which he can control the system. It is assumed
that the system dynamics (which may include actuator and sensor dynamics)
are represented by the linearized equations of motion.

_(t) = Ax(t) + b u(t) + w(t) (4)

where the n-vector x is the vehicle state, u is the human's control input, and

w represents external disturbances. Without loss of generality, w(t) is a zero-
m

mean, gaussian white noise with autocovariance

_n{w(t) w,(_)} = w _(t-c) (5)

The system outputs y(t) are linear combinations of the system states, viz,

_:(t) = c_ x(t) (6)

and are presented to the human by way of some display. (In general y = C

x + d u although for purposes of analysis Eq. (6) suffices.) Thus, with

reference to Section II, the human perceives

_p(t) = C x(t-T) + Vy(t-T) (7)

It is assumed that the human's control task is to choose a control input u*(t)

which, in the steady-state, minimizes

n

J(u) = E{ [ qix 2 + ru 2 + g_2} (S)
i=l i

*The multi-input case presents no difficulties. The control is taken to be a

scalar purely for simplicity.
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conditionedon the observations 2_p(") .t

In Eq. (8), qi ->0, r_> 0 and g>0. A quadratic performance index of this
type represents a natural extension of the classical manual control compensatory
tracking experiments in which the subject was usually instructed to minimize
mean-squarederror. It was chosenbecauseof its physical appeal and its
mathematical tractability.

Note that the neuromuscular dynamics Hn(S) have not been directly included
in the aboveformulation. However, included in J(u) is a cost on control rate.
This term is usedto account indirectly for the physiological limitation on the
rate at which a humancan effect control action. It can be shownthat the
inclusion of sucha term results in first-order lags being introduced in the
optimal controller. Thus, the time-constant rN normally associated with
the neuromotor system is accountedfor simply by a control rate weighting.

With the aboveassumptions (andthe usual assumptions regarding control-
lability and observabilityl0) the human's control characteristics are determined
by the solution of an optimal regulator problem with time-delay and observa-
tion noise (see Klienman11). It is a simple matter to extend the results of (11)
to include the additional term g_2. Onedefines _X(t)= col[x(t), u(t)] , p(t) =

fl(t) where_X (t) satisfies:

i(t) = A X(t) + b _(t) + w (t) (9)
--0 -- --0 --0

with

A Ib_

I

A: .... 7--
o :o

; b
m O l (10)

and _o (t) = col [w(t), 01 .

It can then be shown that the optimal control u*(t) is generated by the
linear feedback law

_fMore precisely

T

J(u) = lim E{ 1_ f [
T ÷ _ TO

n 2
qix i (t) + ru 2(t) + gd 2(t)] dt I

i=l

, a i t}
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n
_ _ ^

p (t) - d (t) = - 9_n+lU (t) -- i=!_ gixi(t)

or equivalently,

(11)

* * _*^ A
T.Na (t) + u (t) = - x(t) = u (t)C

(12)

where

TN i/_n+l ' _'m TNZ i i = 1,2,...,n (13)

and where __(t) is the least mean-square estimate of the state x(t) conditioned

on the observed data yp (a), a<t. The n + 1 feedback gains __ are obtained
from

(14)

where K o is the uniaue positive definite solution of the n + 1 dimensional

Riccati equation

A, K + K A + Q-o-  bobo'E/ : 0
--O --O --O --O -- -- "

(15)

where Qo is diag (ql' q2"'" 'qn 'r)"

The esttmate x(t) ts generated from yp (t) by the cascade combination of a
Kalman estimator and a least mean-squ_red predictor, both of which are

linear dynamic elements. The overall close-loop control system is shown in

Fig. 2. The Kalman filter generates a least mean-squared estimate, _(t-_-)

of the delayed state x(t-l-) by

• -1 ^A A

x(t-,T) = A x(t-T) + _ C'V [_p(t) - C x(t-T)] + b u (t-T) (16)
__ -- __ --y --

where Vy is an m × m diagonal matrix whose elements are the covariances of

the observation noises Vy(t). _ is the covariance matrix of the estimation
error e(t-T) = x(t-r) - _(t-_') and is the unique positive definite solution of

-1

O = A r + r A, + W - Z C' Vy C r. (17)
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Figure 2. Control Theoretic Model of Optimal Human Behavior

The predictor generates the best estimate __(t) of the current system state

from p(t) A__x(t-r)by

A

x(t) = 6(t) + eA_[p(t) - !(t-T)]

!(t) = A_(t) + b u (t)

(18)

The detailed structure of the optimal feedback system is shown in Fig. 3.

Note that the Kalman filter (also predictor) requires for its implementation

a model of the dynamic system, or put another way, a model of the environ-

ment. When Vy is given by Eq. (3a), there arises a subtle mathematical
point which has been omitted in the theoretical development. The optimality

of the control low (12) depends on __ being independent of u(t) 11. Since Z.

depends on Vy, which by Eq. (3a) depends on the covariance of y(t), which,

in turn, depends on u(t), the optimality of (12) can be questioned. This

point is too complex to be investigated herein. However, even if (12) is

non-optimal, it is a reasonable suboptimal (separable) control law.
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In summary, the feedback control system of Fig. 2 has the same struc-

tural form as the basic system model of Fig. 1 (except for the motor noise Vu).
The Kalman estimator models the human's deduction of system states from

displayed information while the predictor models the human's compensation

for his inherent time delay. Note that no approximation to e -s_" was necessary

in this development. The first-order lag (TNS + 1)-1 associated with neuro-
motor dynamics has been modeled by including a term gfl2 in the cost functional

J(u).* For given values of qi and r there is a one-to-one correspondence

between g and TN: the smaller g, the smaller is T N.

Before discussing any further application of the model we first modify the

above results to include the motor noise term Vu(t ).

IV. EFFECTS OF MOTOR NOISE

Motor noise, which thus far has been neglected, is included in our human

operator model in the straightforward manner indicated in Fig. 2. A white

gausstan noise Vu(t ) is added directly to the commanded control Uc(t ) with
the property

E{Vu(t)Vu(T)} = Pu E{Uc ] 6(t-T) = V u 6(t-T) (19)

thus correspondingto the motor noise model of Section II.

With the inclusion of Vu(t), the control theoretic model of human behavior
will be modified. The nature of this modification is discussed below. We

shall assume, however, that the model retains the control structure that was

obtained i__nth._e absence of motor noise. Thus, the human's control input u(t)

is assumed to be generated by

TNfl(t) + u(t) = Uc(t) + Vu(t) (20)

_A

Uc(t) = - £ x(t) (21)

where _'N andS* are determined by Eqs. (13)-(15). As before, _(t) is the best

estimate of x(t) conditioned on the observations yp @r), _ _>t. The ramifications
of this assumption are currently being studied. Besides being the simplest

way of including motor noise, the assumption is physically reasonable since

v u is always small relative to E {Uc2 }. Thus, the inclusion of Vu(t ) will not

*A more complex representation @1 s2 + T2s + 1) -1 of the neuromotor
dynamics can be modeled by including a further term hfl 2 in J (u).
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appreciably affect system performance, especiaily in the low-frequency
manual control range w < 40 rad/sec. In some cases, however, the motor

noise can affect the nature of the Kalman filter.* Note that from a purely

theoretic viewpoint, .......L,_ _u,,_*_'_l_._=+_vo_ (21) no longer_ minimizes J(u),

(E {u 2 } is indefined).

The estimate __(t) is obtained by the cascade combination of a Kalman filter

and predictor, modified to include the additional noise term Vu(t ). One defines

X(t) = col[x(t), u(t) ] where, by combining Eqs. (20)and (4), X (t) satisfies

_(t) : AIX(t) + b I Uc(t) + wl(t) (22)

with wl(t ) = col[w(t), 1/_" N Vu(t )1 , b 1 = col[0,...,0,1/TN]and

h__1

A , b

l

I

0 i_ i

i T N
!

; E{_!z(t)_l'(_)}

W _ 0

!

' 2
0 ,Vu/- ' YN

i

= _1 (23)

The Kalman filtergenerates __(t-_),a least mean-squared estimate of X(t-T),

from
-i ^

= AIX(t-T)'+ ZIC_V_y [yp(t)- CIX(L-_)] + bjuc(t-_) (24)

whereC 1 =[C : O]. (Ify=Cx+ duthenC1 =[C :

covariance matrix Z1 satisfies

-1

o = Al_a + r.A' + wI - r_.c'v czi l-- 2.2-i _±-l-y

d]). The error

(25)

The predictor generatesXA(t) = col[_(t), _(t)] according to

^ A__I_ ^
x(t) = __(t) + e Ix(t-T) - _(t-%)]

(26)

_(t) = A.l_(t) + bluc(t)

*In the absence of motor noise the Kalman filter generates an exact estimate

of u(t). From a human operator viewpoint this is unrealistic since the human

does not know the control signal perfectly.
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Thus, the human operator model remains linear. Its basic structure remains
as in Fig. 2; however, its detailed structure is different from that of Fig. 3.
If Vu = Othen it is straightforward to show that Eqs. (24)-(26) are equivalent
to Eqs. (16)-(18).

Finally, using the techniques of Reference (11), it is possible to obtain a
closed-form expression for the covariance of X_(t),

!l T _{T T !lo A' a
X_ = E{x(t)x'(t)} = e E_le-- + f e Wle--I da

O

(27)

+ f e-- e ZIC_Vy CIZ I e e do
0

where

A

A ' b
-- | --

!

r

!

TN _ ii*/ ,_ -
! T N

(28)

Thus,

E{x.2(t)} = X for i = 1,2,...,n
-i --ii

E{u2(t)} = x
--n+l ,n+l (29)

E{y2(t)} = (C{X C1)ii for i = 1,2,...,m

Eqs. (27)-(29) explicitly show the manner in which the human's limitations

affect overall system closed-loop performance. They are extremely useful in

applying the control theoretic model to the study of actual man-machine

systems. This application is discussed in the following section.
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V. MODEL APPLICATION

In this section the procedure which one would use in applying the foregoing

model to predict human operator performance is discussed. It is assumed

that the quantities A, b, C, W which specify the input-output characteristics

of the linear system (4)-(6)are given. Similarly, the constants qi, r which

weight state and control variances, respectively, in J(u) are given.

In order to apply the optimal control model it is necessary to know the

various human response parameters T, TN, Pi' Pu introduced in Section II.
It is assumed that reasonable approximations to these quantities are available

(conceivably from empirical data). Published data in manual control 8, 13

indicates that typical values from the effective time delay are • = . 15-. 25 sec.

The time constant r N associated with the neuromotor dynamics is of the order

• N = • 1 to . 6 sec with TN _. 1 being typical. 8 (Results reported in (13)

indicate T N varies inversely with forcing function bandwidth. )

The determination of numerical values for Pi and Pu (or equivalently Vy
and Vu) is presently a difficult task. These quantities depend on the nature
of the display, the physical environment, as well as on intrinsic human

properties. One encouraging result has been found, however (9). Over a

wide range of foveal viewing conditions, each white observation noise Vyi(t )
has a covariance that is about. 01_ times the variance of its associated

variable Yi" (Thus Pi = • 01_ and Vyi(t ) when normalized with respect to
E {yi 2 } has a positive frequency power density level of -20dB. ) Values for

Pu have been obtained from a model matching analysis of the manual control

data used herein. We found, typically, Pu = (.004 +. 002)_ (corresponding

to normalized motor noise of approximately -25dB. ), although a further study

is warranted. One should note that it may be possible to obtain estimates of

Pi and Pu for given displays and manipulators by performing simple independent

tracking experiments. If these parameters are independent of the control

task, then complex control situations may be analyzed using the values obtained

from the simple experiments. Preliminary evidence indicates that such an

approach may indeed be feasible. 12

Once the value of r N is specified, it is a simple matter to choose a "control

rate weighting" g in Eq. (8) such that the corresponding gains _ determined by

Eqs. (14) and (15) have 1-N = 1/£n+ 1 as required. Next, values of V y and V u
are chosen such that when the variances (29) obtained with the contro_ theoretic

model, are computed:
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2}
(V_y)±i-- _± E{y±

V u = 0 u E{Uc 2}

This process generally requires several (on the order of 2m) iterations on

Vy and Vu.

(30)

When the model has been adjusted to the requisite values of Vy and Vu,
numerous quantities can be obtained which serve to predict different facets of

human behavior. Closed-loop performance is immediately predicted by

Eqs. (27)-(29). The actual structure of the control-theoretic model is expressed

in the time-domain by Eqs. (24)-(26). Since this structure is linear and time-

invariant, it can be equally well represented in the frequency domain by a

transfer vector relating y to u, i.e.,

U(S) = H(s) y(s) (31)

It is possible to show (although other forms are readily computed) that

_H_ _ ^ T (sI-!l)a ^ blie"] 1(s) - --e [(sI-A) f e da " (sI-A) + sI-A +

TNS + 1 o

_E c_IVy -1 (32)

where ___: [__*,0l , __ : _A1-_ZCI_Vy-IC 1 and_is givenbyEq. (28). There-

fore, in a straightforward manner, it is possible to predict human operator

describing functions which are equivalent to those which could be measured in

experiment.

Knowing _.H(s) one can compute various signal spectral densities. Thus, it

is simple to reflect the remnant processes .V_yand v u to an equivalent noise

process injected onto any given output, yj. The result of this manipulation
would be a prediction of remnant spectrum as measured experimentally by the

techniques of reference 9. Finally, the model allows us to predict the power

spectrum (input and/or remnant related portions) of any system state, of any

output Dr of the control. A computer program which accomplishes these

tasks has been developed.
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Thus, the model, if indeed correct, would be a most powerful system
analysis tool. There are relatively few arbitrary parameters in the model,
and it may be possible to o_a,_....... *_-^o_,_.f,-_m..... empirical data. In the next
section, the model is applied to the study of three simple manual control
experiments in order to validate our current approach.

VI. MODEL VALIDATION

To demonstrate the model's validity anduse, the results of applying it to
three basic compensatory tracking tasks are presented. In these, the controller
was provided with a single manipulator andwas given an explicit display only
of system error (a scalar). Hecould, therefore, extract error rate informa-
tion as well. The system dynamics were respectively k/s, k/s 2 and k which
represent three of the most widely studied cases in the manual control
literature. The input disturbance was composedof sinusoids so arranged as
to model first-order filtered white noise (secondorder noise for k dynamics)
with a break frequency at 2 rad/sec. The subjects were instructed to minimize
total mean-squared error.

Of the three systems studied, the analysis of k/s is detailed for illustrative
purposes. In each of the three cases, the normalized observation noises on
error and error rate were adjusted to -20dB (white noise power density level)
corresponding to foveal viewing conditions. Normalized motor noise was
universally adjusted to -25 dB. Nominal values of T and _N were . 15 and . 1 sec,

respectively.

1. k/s Dynamics (k = 1)

The system state equations are first obtained. If x l(t) denotes the noise

disturbance (which is added to control input) and x2(t ) denotes the system
error, e, then

_l(t) = -2xl(t ) + wl(t)

 2(t) = xl(t) + u(t)

where wl(t ) is white noise with covarience Wll = 8.8 (so as to yield a required

value of E {x12 }= 2.2). This, in matrix notation

x(t) = A x(t) + b u(t) + w

357



where

A
-2 0

i 0
; b

0

1

W

8.8 0

0 0

The system outputs (i. e., "displayed" quantities) Yl and Y2 were respectively

error (x2) and error rate (x2). Thus y = C × + du where

C

m

0 i

i 0

0

; d =
1

The control task was to minimize mean squared error.

the additional term g_2 is

2} + gE{ 2}O(u) = E{x 2

Thus, J(u), with

The analysis was conducted with g =. 00017 so as to yield T N = . 08 sec

(slightly below nominal).* The nominal effective time delay T = . 15 sec was taken.

Next, as outlined in Section V, values of Vy 1, Vy 2 and Vu were chosen which
corresponded to normalized white noise power density levels of -20, -20 and

-25 dB, respectively. The variances which result from these noise values

constitute the prediction of closed-loop performance. Table 1 contains the

experimental and theoretical values of mean squared error, error rate and

control input. Both sets of numbers correspond to within 10 percent.

Having specified all of the model's parameters, Eq. (32) was used to

determine the human's transfer function. Since there are two displayed

quantities Yl and Y2 and a single control input u,

u(s) = hl(S) Yl(S) + h2(s ) Y2(S)

*It was found that _N = • 08 resulted in slightly better agreement with

experimental quantities than did _N = • 1.
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The transfer functions hl (s) and h2(s ) are not directly measurable,but a
closed-loop describing function relating control to error can be measured.

This measured describing function is simply the "equivalent" transfer between

u and Yl and can be shown to be, for this example

hI + sh
(_u) = .2

Yl l + h
E 2

Figure 4 shows a comparison of the measured and predicted describing

functions for this example. The measured and predicted equivalent injected

remnant spectra 9 (reflected and normalized to system error) are shown in

Fig. 5a. As can be seen, the predicted results are in remarkable agreement
with the measured data.

2. k/s 2 Dynamics (k = 1)

For this task the noise disturbance was added to error rate. The system

state equations are (x 1 -- noise, x 2 = error)

_l(t) = -2Xl(t) + wl(t)

_2(t) = x3(t) + xl(t)

x3(t) = u(t)

w l(t) has covariance Wll =. 217 to give E{x 2 } :

ties are Yl = x2, Y2 = x3 + Xl = error rate.

• 054. The two output quanti-

The analysis was conducted as for k/s dynamics.

picking g = 7 x 10 -5. The time delay T was . 21 sec.

noise levels were adjusted to their requisite values.

TN was set to. 1 sec by
Observation and motor

The resultant closed loop performance, equivalent human describing

function, and remnant spectrum (reflected to error rate) are compared with

the corresponding experimentally obtained quantities in Table 1, Fig. 6 and

Fig. 5b, respectively.

359



4O

"D

20

3
:E

0

0

-100

P. -200
3

1"

-3O0

.-4O
0.I

i

l

O.
J

m

O

I
!:)

!
i
I

THEORETICAL

o MEASURED

! :
1

0.2 0.5

m --,1_i

I

iI_,l,i_l m

m m,

"--'C

m

m i
i

0

m m

• !

q

m

m

2 5 I0 2 50

FREQUENCY (rod/sec )

Figure 4. Theoretical and Measured Human Controller Describing

Functions, k/s Dynamics, Average Four Subjects

360



o

•o Itn i

b - 20

:l -- THEORETICAL

I 0 MEASURED

-4o I I I I I 1111
o., o.z 0.5 Lo 2

FREQUENCY

o

m

v

b -20

=N

0

-40
0.I

0

0

N _ -20
b

-4G
0.1

5 I0 2O
(rod/see)

a) k/s,DYNAMICS

i
50

i

0.2 0.5 1.0 2 5
FREQUENCY (rod/sec)

b) k/s 2 DYNAMICS

I0 20 50

0.2 0.5 i.o 2 5 io 20 50

FREQUENCY (rodlsec)
c) k DYNAMICS

Figure 5. Theoretical and Measured Normalized Injected Remnant Spectra.

361



40. I

-- 20 .....

-1-

I
i

I O0

t_

-IOC

3
v

I-

-200

I

.300 L.----i

- 400
0.1

! i!
i

i

I

• _e . .'. B"

i

J

I

L

I'

------THEORETICAL

o MEASURED

I

I

i

i

I
I
1

,c

i

I I

, i

I i _

I

L
5

(rad/sec)

li

1.0 2 I0 20
FREQUENCY

i
I

i

i
5O

Figure 6. Theoretical and Measured Human Controller Describing

Functions, k/s 2 Dynamics, Average Three Subjects

362



3. k Dynamics {k = 1)

For this experiment the input disturbance (Xl) was second-order filtered

white noise with a break frequency at ¢0=2 ,-au//-_ec. ,-_,,,^'_ to ......_a,,_,_ high

frequency noise, the pure gain dynamics were approximated by a filter f(s) =

40/(s + 40). The time constant _'N was set to. 1 sec and T = . 15 sec.
Observation and motor noises were adjusted to their respective levels. The

comparison of theoretical and measured quantities is given in Table 1, Figs. 7
and 5c.

Table I

Measured and Theoretical Human Performance

Parameters

System TN T

k/s .08 .15

k/s2 .10 .21

k .11 .15

M.S. Error _ M.S. Error Rate M.S. Control

Meas. Theor. Meas• Theor.

.13

• 014

.13

.12

• 014

.14

Meas. Theor.

3.1 3.06

.10 .11

4.8 5.3*

4.2

1.43

• 53

3.83

1.28

• 54

The remarkable agreement between predicted and measured quantities as

demonstrated above is extremely encouraging. Although this validation was

preliminary, the model was capable of accurately predicting various pro-

perties of human response. Note in particular the high frequency resonant

peaks in Figs. 4, 6, 7. These have been associated with characteristics of the

neuromuscular dynamics by McRuer et al. 8 Examination of our model shows

that this resonance depends on 1"N and the prediction and estimation processes•
Of course, the model does not tell us whether this peak and other characteristics

of the human's response are implemented by muscles in the arm or in the head•

It does, however, suggest reasons why these characteristics are present.

For our purposes, understanding why is usually more important than under-

standing where.

*In the measurement frequency range w<32 rad/sec.

363



20
-20

0

ol

-I00

'1o

-20(:
3
1-

-50¢

I

-400
0.1

:)l

i

I

!

L ,
I

_THEORETICAL
I

0 MEASURED

I

Lllh
0.2 0.5

i

L
1.0 2 5 I0 20
FREQUENCY (rod/sec)

\

o\

\

• i

i!

5O

Figure 7. Theoretical and Measured Human Controller Describing

Functions, k Dynamics, Average Three Subjects

364



\_I. CONC LUSIONS

Application of optimal control and estimation theory has been made to

develop a model of human response behavior in manual tracking tasks. The

basic assumption .-_l_,_u,,u___._, nut.... aDoroach., was that the human operator behaves

in a near optimal manner, subject to his task definition, his inherent limitations

and his constraints. As shown in Fig. 2, the resultant model consists of the

cascade combination of a Kalman filter, a least mean-squared predictor and

a set of gains acting on the estimated state.

The model's use in predicting task performance, controller describing

functions and power spectra was discussed in detail. Its application was made

to predict the experimental results obtained from three different manual control
tasks. The results show that the model is capable of reproducing all the

essential data in these experiments, using relatively few parameters. The

excellent agreement between theoretical and measured quantities underscores

the value of modern control theory as an analytic tool in human operator

studies.
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18. Application of Optimal ControlTheory to Prediction

of Human Performance in a Complex Task*

Sheldon Baron, DavidL. Kleinman, DuncanC. Miller,

William H. Levison, and Jerome I. Elkind

ABSTRACT

An optlmal-control-model of the human operator is used to analyze

a manual control task involving the control of longitudinal posi-

tion of a hovering XV-5A. It is shown that the model can reproduce

the essential characteristics of pilots performing this task as

well as system performance scores. In addition, the same optimi-

zation framework is used to predict visual scanning parameters.

I. INTRODUCTION

The objective of our research in manual control is to develop

analysis and design procedures for manned-vehlcle systems. Our

approach is based on human response theory and the analytic methods

of modern control theory. The optimal-control-model of the human

operator developed and described in detail in References 1 and 2
is central to our efforts. In this paper we discuss briefly how

that model was used to analyze a V/STOL flight control task. We

illustrate the ability of our model to reproduce the essential

characteristics of the human operator and also show the current

state of our analysis procedure. A more detailed discussion of

our approach and the results we obtained is given in a forthcoming

report [3].

II. DESCRIPTION OF EXPERIMENTS

Control Task

The particular task that we examined was the manual control of

longitudinal position of a hovering XV-5A. An analog diagram illus-

trating the dynamics involved in our experiment is shown in Figure 1.
We assumed a fixed altitude so that there were two degrees of freedom-

pitch and longitudinal position. The pilots attempted to minimize

mean-squared position errors in the presence of wind gust disturbances

This work was supported by the Air Force Flight Dynamics Laboratory

under Contract No. F33615-68-C-1192.
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The disturbance appeared as a random vehicle acceleration.

It consisted of a sum of thirteen sinusoids whose power spectrum
appro×imated that of white noise passed through a first-order

filter with a pole at 24 rad/sec The ampiitud_ of the _',_
ance was adjusted to yield a mean-squared vehicle acceleration of
0.82 (ft/sec2)2 in the absence of control.

Control was accomplished by pitching the vehicle, thus gen-

erating a longitudinal component of the gravity vector. The con-

trol input is denoted by eNF in Figure l, since it corresponds to

a nose fan deflection in the real vehicle.

The vehicle dynamics are fourth-order and slightly unstable.

The control task is quite difficult; this difficulty is reflected
in our measured data which shows the fractional remnant of the

stick was in excess of .7 for all subjects and all runs.

Displays

Two oscilloscope displays separated by 15 degrees were used.

On one display a simulated artificial horizon presented pitch (e).

On the other display we presented either the position (x) or the

position and the velocity (u) of the vehicle. An investigation of

the problem of determining what information should be displayed led

us to examine these two situations with respect to the "position"

display. We found, from a sensitivity analysis, that longitudinal
acceleration (u) was the most important variable for this control

task so we decided to examine the effect of displaying this quantity.
Now, we assume, on the basis of much human response data (see

Reference 4 for a discussion), that pilots can extract the first

derivative of a displayed quantity but not higher derivatives. Thus,

to investigate the effect of displaying longitudinal acceleration,

we considered the following two experimental conditions with respect
to the position display. In one case only a bar indicating vehicle

position was presented. In the other case, a dot indicating vehicle

velocity was added to the display. Our hypothesis concerning t/_e

pilot then implies that in the first case he obtains position and

velocity information while in the second case he obtains position,
velocity and acceleration information.

Subjects

We used three experienced pilots in our experiments. One of

them, subject JM, had extensive helicopter experience. The subjects

were thoroughly trained in the control tasks studied; each subject

performed more than one hundred, four-minute training runs.
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Experimental Conditions and Data Analysis

Six different tracking conditions were used. In the normal

condition, the subject was allowed to scan visually between the

pitch display screen and the position display screen. In the no-

scan cases, he was required to fixate one display only, so that

the only information that he received from the other display was

by peripheral observation. So, there were three modes of viewing
the displays: fixating the pitch display, fixating the position

display, and scanning between them. Each mode of viewing was re-

peated with and without the presence of the velocity display in

the position display, making a total of six experimental conditions.

The final data sessions consisted of two trials at each of the

six conditions. Input disturbance, control stick deflection, pitch

and pitch rate, and position and velocity were sampled and stored on

a digital computer. Variances for these quantities were computed
on the digital computer. These variances, for all the experimental

runs involving scanning, are presented in Table A in order to indi-
cate the inter- and intra-subJect variability.

A describing function between position and stick and correlated
and uncorrelated stick spectra were also computed for the runs with

scanning. Because of the large amounts of remnant power and the
inherent filtering of the plant, the describing function data were

not useable beyond about 2 rad/sec. The correlated stick spectra

were valid for slightly greater frequencies. Measurements of un-

correlated stick spectra, on the other hand, were reliable over
most of the measurement range (up to 32 rad/sec).

Eye-movements were detected by skin electrodes and were sampled
and stored on the digital computer. Average scan periods and frac-

tional allocation of fixation time were then computed. These data,

for the six scanning runs, are presented in Table B.

III EMPLOYING THE OPTIMAL-CONTROL-MODEL

Let us now return to the model and its use in analyzing this

task. In Figure 2 we show the model structure and the closed-loop
system. We can see in this diagram most of the information that is

needed for implementing our analysis procedure. This information

can be separated into two categories -- task related information and

information concerning the parameters of the pilot model.
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The requisite input information along with the outputs that

may be obtained from the analysis procedure are listed in Figure 3.
We now discuss this information in general, pointing out the spe-

cifics of the XV-5A application as we go along.

First, we must describe the task in analytic terms. Specifi-

cation of the vehicle dynamics and the system inputs is a straight-
forward, well-understood procedure. For the application considered
here these were described earlier.

Designating the variables to be displayed may be an objective

of the study. However, once the displays are specified, the inclu-

sion of this information is also relatively straightforward. Recall,

that by the displayed variables we mean the quantities displayed

explicitly plus the first derivatives of these quantities. Note
that our procedure as currently formulated, requires that the dis-
played variables be obtainable from a linear transformation of the

state variables. It is not necessary, however, that all states be

displayed. In the XV-5A application the displayed variables are

pitch, pitch rate, position, velocity and, as noted before, in some
cases acceleration.

As part of our task description we need a measure of system

performance. In general, we use a quadratic cost functional that
is a weighted sum of the variances of the state and control variables.

We also include a term that is proportional to mean-squared control

rate. Hence, the performance functional has the general form

n

i=l xi

where s denotes the stick or control input. In the XV-5A task the
pilots were instructed to minimize mean-squared position error.

Thus, all the weightings other than the position weighting were
nominally zero. We say more about this shortly.

Now let us turn to a description of the pilot. The structure
of our pilot model is fixed by optimal control theory but that theory

does not provide us with the parameters of the model. These must

come from another source, namely human performance data.

The first pilot parameter needed is his time delay. This delay

is a lumped representation of the delays associated with the visual,

central processing and neuro-motor pathways. In simple tracking

tasks, delays of the order of .i to .3 seconds are typical. There
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INPUTS

• TASK DESCRIPTION
a) SYSTEM DYNAMICS AND INPUT
b) DISPLAYED VARIABLES
c) COST FUNCTIONAL WEIGHTINGS

• PILOT DESCRIPTION
a) TIME DELAY
b) OBSERVATION NOISES
c) MOTOR NOISE
d) "TRANSITION" TIMES
e) SUBJECTIVE WEIGHTINGS

OUTPUTS

• STATE, OUTPUT, AND CONTROL VARIANCES

• PILOT DESCRIBING FUNCTION AND REMNANT SPECTRA

eSTATE, OUTPUT, AND CONTROL POWER SPECTRA
(INPUT CORRELATED AND REMNANT CORRELATED)

• SCANNING PARAMETERS

FIG.3 MODEL INPUTS AND OUTPUTS

375



is not sufficient evidence to establish the time delay in more
complex tasks such as the one considered here. We chose a value

of .25 seconds; the data indicate that this was a reasonable choice.

The determination of observation noises is a critical aspect

of our problem. The observation noises are our prime sources of

remnant. As such they represent more than just errors in percep-

tion. Fortunately, we have performed a sufficient number of ex-

periments to obtain a reasonable knowledge of observation noise,

especially for foveal tracking. Our current knowledge of foveal
observation noise is summarized in Reference 5.

On the basis of this knowledge we decided to measure the ob-

servation noise ratios associated with each displayed variable in
the XV-5A task by performing a set of K and K/s _ experiments.

(The observation noise ratio, which is the key quantity to deter-

mine [5], is defined as the power density of a white observation
noise divided by the variance of the associated observed signal.)

Since in some experiments there were five displayed variables, we
had to measure I0 such noise ratios (5 Foveal and 5 Peripheral).

In these experiments the input bandwidth was fixed (and was wider-

band than the XV-5A input) and we attempted to achieve signal vari-

ances that were close to those expected in the full task. We were

aware that our peripheral noises would be suspect with respect to

the full task, but we wanted to see how far we could proceed on the
basis of simple measurements. The resulting measured noise ratios

are shown in Table C. We shall, henceforth, refer to these ratios
as the measured observation noises.

The no-scan experiments were performed partly because we felt

that it might be necessary to measure the observation noises in a
full task environment. It turned out that we did not use this data

to measure observation noises; however, these experiments were use-

ful for estimating other pilot parameters and for understanding the
relative importance of peripheral vision in the two experimental

conditions (with and without velocity display).

The next parameter to be specified is the motor noise. Frankly,

we do not presently have an a priori means of specifying the motor
noise. Indeed, we do not even know how to measure the motor noise

although we have some preliminary ideas. We have done some model

matching and for simple tasks the motor noise ratio, defined in the
same way as the observation noise ratio, turns out to be approximately

-25 dB[2].In the XV-5A application, there is one motor noise to be

specified since there is only one control input. We chose the motor

noise ratios to obtain good agreement with the no-scan scores and

found values of approximately -20 to -23 dB yielded the best results.
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It should be noted that the overall effects of motor noise, at

least for the ratios we used, are not very great. In many cases,
it appears that the motor noise may be neglected.

Human pilots cannot switch the fixation point of their eyes
instantaneously. We call the time that it takes to switch from

one display to another the transition time. This time is assumed

to include accommodation time as well as eye-movement time. We

assume that nothing is seen during this transition, i.e., the ob-
servation noises are infinite. A value of .1 sec for the transi-

tion time was used in our application. Based on eye-movement data,

this seems to be a reasonable value for the display separation we
used. The transition time effects mainly the scan period.

Earlier, we indicated that we measure performance in terms of

a quadratic cost functional and that we had to pick weightlngs for

this functional. Now, such cost functionals are rarely specified

in precise terms outside the laboratory. Pilots are likely to adopt
a subjective cost functional that they can relate best to the task

requirements. We assume that the pilot's subjective cost functional
has the same general quadratic form as the objective functional

(Eq. l) but we admit the possibility that he might select subjective

weightings that are different than those specified by the experimenter.
In the XV-5A application, since we were dealing with skilled pilots,

we considered it reasonable to expect them to attach importance to

pitch and to control (or stick) rate in addition to position. Thus,
we considered the following subjective cost functional

j = c2 + 2 _2
x qe_e + G s (2)

It can be shown that the control rate weighting G introduces a first-

order lag in the optimal controller [2]. Thus, the control rate
weighting could be used to account for the lags often associated

with the neuro-muscular system. This analogy may be useful for

estimating G. In this study the control rate weighting and the

pitch weighting qe were chosen largely on the basis of the no-scan
scores. (Recall that the motor noise ratio was also chosen in this
manner.)

Those, then, are the inputs to our procedure. The outputs of

the procedure are also listed in the figure. They, too, consist of

system and pilot measures. It is worth pointing out that we have

written a computer program that implements our procedure and outputs

quantities, such as power spectra, describing functions _d scores,

that can be measured directly.
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IV. COMPARISON OF THEORETICAL AND EXPERIMENTAL DATA

We now compare the predictions of our procedure with some of

the experimental data. In particular, we shall analyze in detail

one subject, RF, who exhibited very interesting scanning behavior.

Table D presents a comparison of measured and theoretical scores

and scanning data for various assumptions concerning the subject's

parameters. In all cases the foveal observation noise ratios mea-

sured in the single axis experiments were used. Different assump-

tions were made, however, concerning the use of peripheral vision.

The quantity T n shown in the table is the time constant associated
with the lag introduced by the control rate weighting.

First, let us look at the case where velocity is not displayed

explicitly. The measured scores and scanning parameters are shown
in the first column of Table D. They are the averages of two runs.

Model results using the measured peripheral observation noise ratios

and assuming no subjective weighting on pitch (qe=0) are shown next.
For these conditions the scanning prediction is wrong -- it says

spend 100% of the time on the pitch display. Also, the pitch-related

scores are inordinately high suggesting the need for a subjective

weighting on pitch. Adding a pitch weighting (q8=2) and changing

XN slightly improves the scores but doesn't change the scanning
prediction. If it is assumed that no information is obtained pe-
ripherally the scores are improved further but the scanning predic-

tion, although moved in the right direction, is still not very good.
The last column of the no velocity display data in Table D corresponds

to an intermediate assumption concerning the use of peripheral vision.

In particular, we assumed that when position display was fixated the

pilot could obtain peripheral information on pitch and pitch rate,
i.e., we used the measured slngle-axis pitch peripheral noise ratios;

conversely, when the pitch display was fixated we assumed that no

peripheral information concerning position was available. The basis

for this assumption will be discussed momentarily. For now we note
that this assumption leads to an excellent prediction of scanning

behavior and the prediction of scores remains good.

When velocity was explicitly displayed, performance improved

considerably in accord with our prediction that acceleration is im-

portant for control in this task. The observed scanning behavior

also changed. Indeed, this subject hardly scanned at all; he had

a scan period of 6.8 seconds and spent 93 percent of the time fixat-

ing the position display. The last column shows the results of mak-
ing the same assumption concerning peripheral vision as that which

yielded the best scanning prediction in the no velocity display case.

The model predicts 100 percent of the time fixating the position

379



u_I--

, ,(D
_LLJ

(__Oq
_IJ-J

I_.-J

rY_

I--

<_
__/

,_ i.ul D--

Lx._

C)

zO
OLL_
C_

_..) (-.)
m

uo o4 C
_ L.ul ¢kl C,J

>- I

oo
I.ul

>- Z _ I
I.--

i

0 Z (J9 04 I 0
__I 0 I-I-I O.I! C,.I

Z >- I

-r"

(D I.ul C_I ¢%.I

>- I

>-

.__I LLI
Z (./9 04 ,..-4

(,'9 0 I_ul C_I 04

Z >- I

>- ._

I-- O0 (.-_D--_ (.,9 04 ,--_

_._ I.LI_--_,_ >-- I
0 _-UO

.--I

0 ,::KZ x O _
Z U_I ,--_,::_ Z I

_-C/_

I_ m"Z (-9 NO') I,_

_- "T" ,--, I.,1_1 Z --JO
,_ ,', oo _ P ,::_Z O

_ _ O0

0
n _'-

O _D _ _ O_

• -- • 04
Oh 04 _ CO CO O.I

lid CO O _, O4

O
O • • O O _

C_ C0 ° • °

cO cO

o4 O O CO

_-_ O

8 o
O

O
Oh

O

_-_

+I

cO Lr)
_4D

%0 • O0
04 ,_- 04 O_ O0 ,-_

p-.

O4 %O

z

O

p--

O

z

O
Z _ X

•:_ I._
-r _ _ __

380



display - not a bad prediction. What is perhaps most interesting,

however, is that if we assume no peripheral vision and impose the ob-
served scan period on the model, the optimal fractional allocation
of fixation time is very close to the observed value.

Let us now examine some of the no-scan data to see how our

assumptions concerning the use of peripheral vision are borne out

by these data and by the model predictions. Table E shows a com-

parison of the theoretical scores, with and without peripheral

vision, with the no-scan scores obtained experimentally_ Note that

the model predicts that, without the velocity display, the vehicle

is virtually uncontrollable if the x-display is fixated all the

time and there is no peripheral vision. _en velocity is displayed

explicitly, however, this is no longer true. The reason for this

is clear if we recall that the most important quantity for control

is longitudinal acceleration. When velocity is displayed explicitly,

acceleration is available from the x-display and pitch information

is not necessary for control. When velocity is not displayed, the
only information concerning vehicle acceleration that is available

is on the pitch display (i.e., knowledge of pitch implies knowledge

of the longitudinal component of the gravity vector). Comparison

of the measured and theoretical data for fixatin_ the x-dlsplay

supports the conclusion that the subject uses pitch information

obtained peripherally only when there is no velocity display.

The no-scan data for fixating the pitch display indicates that
virtually no peripheral information on x is used regardless of whether

velocity is displayed. This is not because such information could

not be used profitably. (Note the improved scores for the theoretical

data with peripheral vision.) Rather, the explanation appears to

lie in the fact that the position indicator moved very slowly and,
as is known, this degrades peripheral vision. The pitch indicator,

on the other hand, moved rapidly enough to permit reasonably good

peripheral viewing when the x-display was fixated.

In Figures 4 and 5 we show pilot describing functions and stick
spectra for the two conditions with respect to the display of velocity.

The theoretical curves for the case where velocity is displayed ex-

plicitly are those obtained by assuming no peripheral vision and

imposing the observed scan period.

The no-scan scores are actually mean-squared values obtained

directly from values computed on the analog computer.
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The data we have shown thus far are for a single subject. We

have also applied our procedure to another subject and have obtained

comparable results even though this subject's scanning behavior

was quite different. A comparison of the theoretical and measured
scores and scanning parameters is presented in Table F_ Notice

that for this subject the two assumptions concerning peripheral

vision (i.e., no peripheral vision and e-peripheral vision) led

to scanning predictions that bracket the observed scanning behavior.

The score predictions are quite good, however, for either assumption.

There are two possible explanations for this. First, the theoret-
ical data for this subject and this case was found to be relatively

insensitive to scanning parameters so that not a great deal would

be gained by optimizing scanning. An alternative explanation is
that the appropriate peripheral observation noises lie somewhere

between the extremes investigated here. These two explanations

are not mutually exclusive and it is likely that both factors con-
tribute to the discrepancy between theoretical and observed scanning.

In concluding our comparison of theoretical and measured data,

let us point out that score predictions and predictions of pilot

spectra are uniformly good, in fact, better than anythin_ we have
seen in the literature for such a complex task. This _ true regard-

less of our assumptions concerning peripheral vision, and in spite
of the fact that we did not attempt to "fine tune" the model. The

assumptions about peripheral vision were only required to predict

scanning behavior.

V. CONCLUSION

We have used an optimal control model of the human operator to

analyze the manual control of the longitudinal position of a hover-

ing XV-5A. We found that the model is able to reproduce the essen-

tial characteristics of pilots performing this task as well as sys-

tem performance scores. Moreover, with the aid of some simple and
reasonable assumptions concerning the use of peripheral vision,

visual scanning can be predicted within the same framework. The
results were obtained for a control task in which the major part

of the pilots output power was remnant.

On the basis of these results and those presented in Reference 2,

we are reasonably confident about the structure of our model. We

feel that this structure will allow us to predict pilot performance

in complex tasks. Furthermore, we believe it will provide a basis

for obtaining greater insight into how pilots perform these tasks.

i

Stick spectra were also calculated for this subject. They are not

shown here. The agreement between theoretical and measured spectra

is comparable to that obtained for subject RF.
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TABLE F

COMPARISON OF THEORETICAL AND MEASURED
AND SCANNING PARAMETERS (SUBJECT JM)

SCORES

PARAMETERS

I',,

PERIPHERAL
VISION

PITCH WEIGHTING
(qs)

T N

NORMALIZED
MOTOR NOISE (dB)

SCORES

2

X

POSITION °2U

U

2
° 0

PITCH 2
0

q
2STICK
$

SCANNING

PERIOD

% X
,I

NO
VELOCITY

DISPLAY

M
E NONE 0
A
S i .0 I .0
U
R .24 .24
E
D -23 -23

WITH
VELOCITY

DISPLAY

M
E NONE
A
S 1.0
U
R .24
E
D -24

14.3 18.715.1 7.4 6.8

3.7 4.2 3.7 1.8 1.8

2.8 2.7 2.8 1.4 1.5

10.2 10.3!10.4 6.1 6.9

8.0 8,8 9.6 3.7 5.9

16.4 15.718.1 8.111.5

1.1 1.4 oo 1.2 1.2

65% 43% 100% 65% 67%
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Of course, we haven't solved all our problems• In particular,
more data is needed to specify the parameters of the model. Some
theoretical questions also remain to be answered. The treatment

and measurement of motor noise and the determination of subjective

weightings are probably the most immediate of our problems with

respect to the use of the model•
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IV. ADAPTIVE AND DISCRETE MODELS



19. Tracking Quasi-PredictableDisplays

Subjective Predictability Gradations,Pilot Models for

• and Narrowband Inputs *I'll ,uulC

R. E. Magdaleno, H. R. Jex and W. A. Johnson

Systems Technology, Inc.

ABSTRACT

Tracking displays often present signals which are quasi-predictable, e.g.,
from low damped vehicle modes, ship motions, etc. The practical dimensions

of subjective display predictability are reviewed, and an adaptive human

operator model is developed, based on the Successive Organization of Perception

theory of skill and on optimal signal prediction. Analysis of this model

reveals new parameters for characterizing the subjective predictability and

display performance with narrowband processes. The model "explains" a number

of past and present experLmental results.

A. INTRODUCTION

Systems Technologg_ Inc., is engaged in a long-range progr_u to develop a

comprehensive theory for understanding, analyzing_ and improving the pilot's use

of manual control displays. One facet of the program is to evolve efficient ana-

lytical models for the pilot's tracking of quasi-predictable forcing functions.

This report summarizes sQme of our work along these lines during the past year.

It is well established that a human operator can improve his tracking

performance by taking advantage of any predictable aspects of the input,

provided he can perceive them via visual displays or proprioceptive sensations.

A number of piloting problems involve such partly- or "quasi-predictable"

tracking tasks. Examples are: following the optical landing beam of an air-

craft carrier plunging through deep ocean swells, compensating for low fre-

quency lightly damped vehicle modes, fighting pilot-induced oscillations,

terrain-following flight over rolling countryside, etc. Typical forcing

Tunctions of the first type are the actual ship motion time histories shown

in Fig. I. A carrier pilot would like to perfectly match the corresponding

deck motions with his aircraft landing gear if this could be accomplished

through adequate vehicle response bandwidth and suitable displays and controls.

The goals of thf.s report are to analyze and quantif_y some of the predict-

able aspects of such forcing functions, to develop an analytical model for

tracking narrowband commands using a pursuit display, and to validate or

refine previously suggested models for the pilot's system organization in
these situations.

*This work was performed as part of NASA Contract NAS2-3746, "Experiments

for a Theory of Manual Control Displays." The technical monitor was Mr.
Wendell W. Chase of the NASA-Ames Research Center.
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Figure I. A Typical Quasi-Predictable Input; Ship Motion Time Histories

To accomplish these objectives we will make use of the Successive Organi-

zation of Perception (SOP) theory of operator adaptation and skill development

originally proposed in Ref. I. First_ the general SOP concepts_ based on past

experimentsj are reviewed in Section B. Based on this and related literature,

three "dimensions" of subjective tracking signal predictability are presented

in Section C. In Section D, results of some special sine-wave tracking experi-

ments suggested by the theory are used to refine the SOP model structure for

"perfectly" predictable inputs. Next 3 in Section E_ we develop a simple ana-

lytical model for narrowband inputs based on a Kalman optimal predictor, and

test it against earlier bandpass tracking data. Mathematical background and

derivations are presented in the appendix.

B. RE_ OF SUCCESSIVE ORGANIZATION OF PERCEPTION (SOP) TEEORY

The human operator's unique capabilities in tracking situations were first

sun_arized in the Successive Organization of Perception (SOP) theory (Ref. I)_

and were recently brought up to date in Refs. 2, 3_ and 4. In Ref. 3 a suc-

cinct s_mmary of the pilot's higher organization capabilities was given as
follows :

"The human pilot is a multimode, adaptive, I learning con-

troller capable of exhibiting an enormous variety of behavior,
which includes:

IAs used here_ these terms refer to improvements in some measure of per-

formance over that of a fixed-parameter system; an adaptive system changes th_

performance in a new environment, while a learning system changes the perfor-
mance in successiv-$--encounters with the s_me environment [18].
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I ) System Organization

a) Mechanization of Feedback Loops: The selection

and use of particular output motions of the vehicle (from all

of those capable of being sensed) which are best suited to

serve as feedbacks to satisfy the gald_uce _ud control needs.

h) Coherence Detection: The extraction of coherence

in the presented stimuli, including the abstraction of pat-

terns in predictable functions.

C) Coherence Utilization:

i) Mechanization of feedback loops--The set-up

of an internal organization (equivalent to the construction

of several signal-processing paths within the human) to make

efficient use of any coherence in the presented stimuli.

ii) Command pattern generation--The generation _

of internal anticipatory commands which, when transmitted to

the effectors, results in a system output which duplicates

the actual predictable forcing function.

2) System Adjustment

The adoption and adjustment of transfer characteristics

appropriate for control of the system as organized. This

phase also has two aspects.

&) Central Aspects: Associated with the sensory

and equalization functions.

b) Peripheral Features: The adaptive adjustments

of the neuromuscular subsystem."

In this paper we will concentrate on items 1.b and I.c, above. However, we

shall use "subjective predictability" where "coherence" is used above, i.e.,

subjective predictabilitywill include both coherence and pattern detection

aspects.

The most complete statement of the basic SOP stages was recently given in

Ref. 2. These are shown in Fig. 2 and described below:

Levels of the Successive Or6anization of Perception

Compensatory (Fig. 2a). The pilot is given, or pays attention,

only to the error (input minus output) characteristics

represented by YPe"

Pursuit (Fig. 2b). The pilot perceives both the input and out-

put (and, hence, error). He uses any predictable aspects

of the input (represented by Ypi ), as well as the learned
characteristics of his proprioceptive sense of control

motions, Yl_0, and the controlled element, YPm' to operate
in some "op%imum" manner on the input with a compensatory

vernier correction operation on the residual errors, YPe"
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Precognitive (Fig. 2c). The pilot perceives the input and

recog_..izes (or chooses) a perfectly predictable pattern.

open-loop for large intervals of time.

Note that the SOP levels in Fig. I are defined in terms of the "wiring
__" (h1_ a_ __£_n,_ the% _h_ pilot adopts_ _h_ lh_ _h_

particular "task variables" present such as the display format (compensatory-*-

only, pursuit-,-i and m, preview-*-i[t +Tp]), signal predictability and level

_f learning (both of signal predictability, and properties of the manipulator

_nd controlled element). In addition, stress (distractions, "mental workload",

_tc.) can cause a regression from a higher to a l_¢er SOP organization level

[Ref. Ig).

When the pilot operates only on the error and essentially unpredictable

huputs are present, a large number of experiments have shown that the Compen-

satory-level of SOP (Fig. 2a) can be characterized to a first approximation by

remarkably simple analytic model--the "crossover model" plus a simple set

_f parameter adjustment rules. In essence, this model states that the pilot

_djusts his equalization Y_(s) to compensate for the vehicle dynamics,

fc(S), such that the combined open-loop response approximates YpYc _ (_ce-@a_e)/J _

_wer a broad frequency range near unity-gain crossover. Since the Compensatory

_odel has been thoroughly validated and refined, and is definitively covered in

_efs. 3 and 15, it will not be discussed further.

Detailed models for the Pursuit-level of SOP have not been as thoroughly

:0vered, because m_ny combinations of blocks are possible, and a given block

nay have distinctly different analytical forms for different situations. For

_ample. the Y_. block of Fig. 2b can be either a controlled-element compensator
Y_- = Yc-- ) or a pattern generator, depending on a number of task variables

_ ° •

_o_els and data for pursumt dmsplays of unpredictable inputs are presented in

1efs. 5 and 6, among others. For tracking periodic waveforms--one extreme

_f the type of inputs we are concerned with here---with a pursuit type display

[showing both i and m) a tentative periodic waveform model has been

_uggested in Ref. 3. It is based on a review of numerous archaic and recent

_ine-wave tracking experiments, mostly with pure gain controlled elements.

• is model (which will be refined in Section D) retained only the_ Y_re and Y_.
_locks of Fig. 2b. The feedforward block, YPi_ changes from Yc to a "synchronous

_enerator" as a function of both input frequency and operator learning, while

_he error correcting block, Yp , "regressed" out of the picture for input fre-• e
luencmes exceeding the operator's stable crossover capabilities. As discussed

Ln Ref. 3, this model accounts for the observed amplitude and phase locking at

Low sinusoidal inputs and phase and frequency drifting at higher frequencies.

Central to all of the models for tracking predictable inputs is the existence

_f a "pattern," or "synchronous generator" operation (Fig. 2c) which implies use

_f a memorized control sequence to reproduce a learned command waveform. The

_chievement of a pattern generation capability can be tested byhaving the

_rained operator close his eyes (or blank the display) while attempting to con-

_inue producing a complex periodic output waveform. The visual loop is thereby

_ened and the control action results solely from continuation of the internally

_enerated pattern. Figure 3, taken from Vossius, illustrates this Precognitive-

Level of control very nicely. Notice that prior to "lights out", the three-wave
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Figure 3. Demonstration of Pattern Generation

(Adopted from_ossius, Ref. 7)

output is exactly in phase but distorted by the residual tracking errors. Afte_

"lights out" the waveform shape is nearly perfect (after an initial transient)

but there is about a 10 percent reduction in repetition frequency. Further

illustrations of pattern generation of complex periodic outputs with eyes

closed are given in Ref. 8.

In the previous paragraphs we have reviewed some of the limiting case data

for the Precognitive control mode, i.e., periodic forcing functions, some simpl_

(sine waves) and some Complex (Vossius' sum of three harmonics). However_ the

key question is, "How 'much' displayed signal predictability is necessary to

produce the Precognitive mode of control?" To begin an answer to this question,

we will next discuss a number of signal classes and present a predictability

gradation scheme that is based on signal attributes important to the pilot.

_. GRADATIONS OF SUBJECTIVE PREDICTABILITY

As reviewed in the previous section the overall SOP model describes the

pilot's functional structure hierarchy for the entire range of input "pre-

_ictability" (from random inputs to perfectly predictable inputs). However

before the various SOP stages can be selected to make predictions of pilot

behavior we need to quantify those aspects of signal predictability which are

important to the pilot. A survey was made of various classical and nonclassical

ways of gradating signal predictability in an attempt to reyeal relatively

orthogonal w_veform properties relevant to subjective prediction. Three dis-

tinct "dimensions" of subjective predictability emerged from this survey:

a. Waveform "Shape Complexlty"--In tracking a forcing function

containing a repeating pattern _ it appears that the pilot tries

to reproduce the dominant topological features (i.e., the

sequence of lumps and bumps) and puts up with small amplitude

errors so long as the basic pattern timing is correct (recall

from Fig. 3 that an improved reproduction pattern resulted

when performing from memory although the basic frequency is

about 10 percent lower). Other data for sequences of steps

(Noble and Trumbo_ Refs. 10, 11_ various combinations of direc-

tion, timing, and amplitude uncertainty) indicate that the

subject concentrates on first getting the correct direction,

then the timing_ and to a lesser extent amplitude when confronted
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with a patterned forcing function. These conclusions also

describe the subject' s time histories _..rhentracking the

three sine wave pattern of Fig. 3. Thus, it appears that

the subject concentrates on putting out the correct sequence

of peaks and valleys per fundamental repetition putting up

with small errors so lu_g as he is al_ys ready to be going

in the right direction at the right time. Obviously, we

can make the task more difficult by presenting more complicated

and/or detailed patterns- this is what we mean by Waveform

Shape "Complexity".

o Waveform "Time Variations"--This refers to time variations in

the parameters of a patterned waveform. For exampl% consider
a sine wave with a slowly time varying frequency but constant

peak amplitude. If the time variations have small random devia-

tions about an average period then this signal is more predictable

than if the deviations are large. Another form of pattern time

variations results from slow random amplitude variations. In

all of the above cases_ there is a reduction of subjective

predictability due to the uncertainty of the future signal
values.

, Waveform "N_sking by Noise"--Given a highly patterned waveform,

the classic w_y of reducing its predictability is to add wide-

band noise in the frequency region of the desired signal. The

appropriate quantifiers of predictability are signal-to-noise
ratio and various coherence functions.

A matrix illustrating the proposed dimensions for grading subjective input

predictability is given in Table I. Generally_ signals are more predictable

towards the upper left hand corner and least predictable towards the lower right

hand corner. Most of the detailed entries in Table I are examples for which

pilot/vehicle response data exist.

The A categories in Table I (Few Waveform Features) start with a sine wave

which has been well researched (e.g., Ref. 9)- For this case the pilot achieved

the Precognitive level of Fig. 2c. Hess, Ref. 8, has studied modulated patterns

(Category A-2) using periodic amplitude modulations. Narrowband signals

(Category A-3) were tested by Elkind, Ref. 12; and Stark, et al, Ref. 13, for

manual tracking; and G. M. Jones, Ref. 14, for eye tracking--however, only
Elkind's results are directly relevant to manu_l control displays. In making

up this table we have reexamined Elkind's work (to be described in Section E)

and narro_band processes in general. A predictability quantifier for this

type of signal was found to be the "narrowness index", v = bandwidth/center

frequency. Finally, Category A-4 is the classical signal-in-noise problem.

Category B-I (harmonic patterns) used by Vossius, Ref. 7, sets the example

for the B row, Several Waveform Features. This pattern form is carried through

B-2, 3, 4 generally paralleling the coherence decreasing themes given in row A

above. However, most of these have not been used yet and may not be practical

examples except possibly B-2 or 3 which could represent a terrain-following
task.
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In row C (Numerous Waveform Features) Categories C-1,2 were studied by

Noble and Trumbo, Refs. 10 and 11. Categories C-3,4 have received wide

attention with the most extensive and highest fidelity efforts given by

Elkind, Ref. 12, and McRuerj et al., Ref. 15. Wierwill% Ref. 17, has

looked into the effect of spect_1 _-_I_ (_ae_..... of shading filter on _t_..__

noise). The signal becomes more predictable as rolloff slope (N) increases

although (N-I) derivatives must be sensed and used optimally. However, a

pilot is not likely to do more than sense rate and (crudely) acceleration.

Thus, in a practical sense the input forms in Categories C-3,4 approach the
unpredictable.

The proposed input predictability gradation scheme of Table I is intended

to serve as a guide to structuring and interpreting experiments for manual-

control-displays. Our main motivation in understanding the underlying factors

of input predictability is to design better displays and controls which take

advantage of the pilot's SOP and prediction capabilities. Some of the work

we have done in this regard will be summarized in the next two sections.

D. EXPERIMENTS IN TRACKING "F/RFECTLY PREDICTABLE" SINE WAVES

The first step in validating and refining the SOP models is to determine

the pilot's apparent functional block diagrams (discussed earlier) for a per-

fectly predictable input using both subjective pilot comments and objective

performance measures. A pursuit display was used to maximize the level of

SOP achieved. A dot was used to display the input and a line was used for

his response. The sine wave amplitude on the display was approximately 7 cm

peak to peak. At the viewing distance of 76 cm this yields about 5.3 deg peak

to peak (well within the fovea range such that eye movements were not necessary

for tracking). The smallest rms error in these experiments was about 0.7 deg,
i.e., still perceivable.

Experiment A) Various Frequencies--To test the tentative periodic waveform
model mentioned in Section B and to refine its structure.

Experlment B) Input Blanking--Te demonstrate the existence of the pattern generator

block and to tie in with previous work of Vossius (e.g., Fig. 3).

All these experiments employed pitch-axis tracking with a spring-restrained stick

and a pure gain controlled element. The stick sensitivity was approximately I am scope

deflection per cm of travel at the top of the stick (10 am radius of rotation). The

subject was an experienced tracker but had no previous experience with single sine-waves.

l, Experiment A

In Experiment A, seventeen different sine waves were use_ ranging from

.07 to 3.0 Hz. To monitor learning effects, they were divided into three

successive groups such that each group of frequencies covered nearly the whole

range. Frequencies within each successive group were presented in random order.

Data taken included: a) relative-mean-square-error (e-_/i-_), which is sensitive

to small amplitude and phase shift errors; b) relative correlated control

power ( O_ = c-_i/_ ), which is not sensitive to steady amplitude or phase

errors but was used to detect timing variations and frequency mismatch; and c)

subjective comments on the operator's impression of his tracking behavior--to

reveal introspective clues not available by any other simple technique.

Our basic results are presented in Figures 4 and 5. The e_/i-_data in

Figure 4 show essentially "perfect" tracking up to about 1.O Hz, beyond which

it increases at an accelerating rate towards a value of e-_/i-_ _ 2.0 at 3.0 Hz.
This implies that amplitude errors and phase shifts start as low as 1 Hz. On
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Freq. (Hz)
A

i.O _-_--- Line became a blur towards end

SOP LEVEL

Too fast
IV

Felt like I was continually lost, with isolated exceptions

The strategy I used this time was to speed up and then ease back

into the rhythm, rather than trying to ease back into it directly

[Occasional frequency mismatch leading to rapid phase drift]

Initially I got lost, and then there was a fast pace I got into.

You could keep up with the pace, but you would lose it after a while

[Slow phase drifting]

Close to rhythm limit [Subject never lost it]

The rhythm was a little faster than I like. In other words, it
was harder.

About the limit of what I think is acceptable frequency for rhythm

Felt like good rhythm

Good rhythm

You could get into the rhythm

Easy to follow

Smooth and easy

The longer I did it the better it felt

Quite easy

So slow that when my muscles twitched the dot got off the line

Good speed for perfection

III

II

I

Figure 5. Subjective Comments as a Function of Fr_ncy
[Experimenter' s comments in br_f_]
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2
the other hand, the relative correlated power O_ , after an initial drop at low

frequencies to a level of about 0.9, remains constant up past 1.7 Hz then suddenly

drops to very low levels. This implies loss of phase-lock at frequencies beyond

1.7 Hz and frequency drifting at frequencies higher than 2.0 Hz.

The subjective comments in Figure 5 reveal distinct correlations with

various SOP Pursuit level blocks in Figure 2b. For example, at low frequencies

(below .k Hz) the operator concentrates on reducing the easily perceived error

between the displayed i and m signals and there is little sensation of rhythmic

control output. This implies that the compensatory block YPe, is dominant,

while the proprioceptive perception block Ypp is inactive. However, in a broad

range of frequencies from .5 to over 2.0 Hz, the sense of rhythm was strong,

implying that proprioceptive cues (thus Ypp) are dominant. Beyond 2.0 Hz,

comments verify that the control output is an essentially open-loop process.

These results are consistent with past observations (e.g. the definitive

work of Pew, et al in Ref. 9). The combination of error, coherence and comment

data strongly validates the periodic _caveformmodel advanced in Eel. 3. Even

a signal as subjectively predictable as a sine wave leads to several distinctly
different functional organizations within the operator at different frequencies!

The different response characteristics, and corresponding roles of the blocks

in the Pursuit-level SOP structure are shown versus four frequency ranges

designated I through IV in Figures 4 and 5.

Noting that operations on the output perse are negligible (Ypm-_-O in Fig. 2b]

refined verbal model for periodicwaveform tracking is as follows:

I. In the region below about .5 Hz, it is advantageous to use a YPi _ I/Yc

feedforward operation, with YPe still tightly closed for vernier correc-
tions and remnant suppression° In this region rhythms are hard to repro-

duce accurately if attempted at all. At very low frequencies (below .1Hz)

the operator merely operates to reduce the error, i.e., using conventional

YPe c_npensatoryblock.

II. From .5 to about 1. O Hz, rhythm detection permits activation of a

"pattern generator" block, probably using proprioceptively perceived

patterns via Y_. The feedforward block_ YPi' aids in producing the
"pattern generator" response. The compensatory loop_ Ype _ can still

be closed tightly to phase lock the output and suppress remnant.

III. From about 1 to just under 2 Hz, the pattern generator loop is active,

but as the frequency exceeds the operator's compensatory crossover limit

he must loosen it to avoid exciting undue overshoot errors. Thus in

this region control approaches ideal Precognitive-level organization,

_-ithYpe acting only to prevent frequency drift and unable to prevent
random phase and amplitude errors.

IVo From about 2 Hz to the neuromuscular response limit of 5 to lO Hz, the

operator only uses a pattern generator loop'(Ypp and YPi) to roughly

approximate the displayed amplitude and frequency, usually undershooting

both.

Analytical models are available for the Ype and Ypi = I/Yc blocks, but the

detailed parameter adjustment rules have not been measured,yet. One way to do
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so would be to add a very low shelf of "disturbance noise" spanning the input

sinusoid frequency, such that the apparent error spectrum is not noticeably

ehar_ed. This would permit independent deter_Znation of the Yp and Y_.

describing Ikuuctions (e.g., see Ref. 6). Analytic models for t_e patt_rln

generator require a time-varying "learning" capability; early work along these
lines was exploratory.* Ref. 24 presents some recent results.

2. _x_eriment B

The Display Blanking experiments were performed to validate the pilots

open-loop pattern generator mode. For the same setup as in Experiment A, the

input was blanked at a random time during a run by suddenly turning down the

intensity of the i display on the CRT. Several subjects were used. A typical

result is shown in Figure 6 for a 0.71 Hz sine wave. This input is in the

optimal-performance frequency Region II where the pilot felt he had good rhythm.
Note that after the displa_ was blanked the pilot continued to put out the sine

wave, albeit at about an 8_ reduction in frequency which is consistent with

Vossius' results at similar frequencies. This frequency difference shows up

in the error which exhibits an oscillation at the average frequency and has a

slowly varying envelope reflecting the difference frequency. The relative mean

squared error in this "beat frequency" case [with e(t) fluctuating between

zero and 2i] can be shown to be e-_/i-_ A 2.0. Significantly, e-_/r2 from

the previous Experiment A tends towards this level in frequency Region IV (see

Figure _) where the pilot is operating in a similar, nearly open-loop_ mode.

Thus, we have validated and refined the main features of the Pursuit-

level model with very predictable (periodic waveform) inputs. Much work needs

to be done in quantifying the frequency ranges and model parameters and adjust-

ments, and to determine the effects and interactions of more waveform complexity

(still periodic) and various controlled elements. In the simple waveform case,

we want to know how far from ideal the input coherence can drop before this

structure changes, and what its form would be. Our attack on the last problem
follows in the next section.

E. _EDFORWARD MODEL FOR NARROWBAND INPUT TRACKING

As discussed earlier (e.g._ Table I)3 narrowband signals are particularly

interesting for investigating the pilot's SOP behavior because they occur in

numerous real-world problems, the waveform is not too complex and its describing
parameters are well defined and convenient. One of the purposes of the fol-

lowing work was to determine which of these parameters were objectively related

to subjective predictability under ideal display and controlled element con-

ditions, in order to provide a set of gradated inputs for more elaborate

experiments. A second objective was to provide a simple analytic model for

the feedforward loop (the YPi block) in the pursuit-level SOP in Fig. 2b when
quasi-predictable inputs are present. To do this we introduce the "Successive

Peaks Hypothesis" and then show that this leads to a simple Kalman filter model.

*L. G. Hofmann (Systems Technology 3 Inc.-Princeton) has made a start using

optimal estimation and identification based on results in Ref. 23. He notes

that the Kalman formulation yields a pattern generator which can adapt to the
frequency, amplitude and phase of a sine wave.
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I. Narrowband Signal Properties

A narrowband signal is characterized by a clustering of signal power about

a center frequency as shown in the sketch below. (See the appendix for a

detailed summary of these and other properties. )

Power

Spectral

Density

_xx(f)

-.-i A i..-

i/'_ IIt--_----Half Power Point

Jl,i\
, _ Frequency

fo

Figure 7. Narrowband Spectrum Properties

where & = bandwidth between the half-power frequencies [Hz]

fo = center frequency [Hz]

The "narrowness index," v, of this spectra is given by the ratio of bandwidth

to center frequency: v m A/fo- This key parameter will turn up frequently in
succeeding formulas.

As shown in Fig. I (also see the appendix) the time history for a narrow-

band input looks like a sine wave of frequency fo whose amplitude and period

slowly change from one cycle to the next (Fig. A-4 in appendix). A charac-

teristic feature of a narrowband input is that its average number of axis

crossings and peaks per second is very close to that of a sine wave at the

center frequency, fo, even for fairly large values of v. Thus the average

period is To = I/f o (sec).

A classic measure of a signal's coherence is its autocorrelation function_

which is the average correlation between two values which are T seconds apart.

Rice (Ref. 19) shows that for a bandpass power spectral density the normalized

autocorrelation is given by:

p(_) = R(_) [ 9in,(_Z_)T] 2..__._
= [ j cos _o r ; _0 = 2_fo = TO (I)

which is sketched in Fig. 8.

Note that O(T) -b-1.0 as r -_-0. Thus the normalized autocorrelation

resembles that which would be obtained for a sine wave of frequency fo [which

would be p(r) = cos _o _] but with an envelope [sin(_f_)_/(_)T] that drops off

slowly compared to the center frequency. Portions of the signal separated by

Tn sec are highly correlated, i.e., the autocorrelation is at a local maximum
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for these intervals. Evaluating Eq. I at • = To yields

PT
o

sin _v (2)
_v

which is also called the correlation coefficient. This is plotted in Fig. 9.

(We have included a standard deviation, _To, which will be defined and dis-

cussed later). As v decreases, the correl&tion coefficient increases, i.e.,

succeeding peaks are more likely to be of the same magnitude and thus more

'_redictgole." In the limiting case of v = 0 the signal is a sine wave and is

'_erfectly" predictable.

Normalized

Auto-Correlation

p(T) sin Try

\\ -.

T_

Figure 8. Form of Normalized Autocorrelation for a Narrowband Process

Correlation

Coefficient

and

Standard

Deviation

Figure 9.

1.0[ ' I ' I ' I ' I I

i

0 .2 .4 .6 .8 1.0

Narrowness Index =, = A/fo

Correlation Coefficient for Signal Values

Separated by One Average Period
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2. Subjective Predictability _nd Successive Peaks H_jpothesis

A few exploratory experiments with a narrowband input (with fo = 0.76 Hz in
the best performance region) were performed to investigate the effect of v on

subjective input prcdictab_l£ty. The most obvious result was that the subjec-

tive difficulty of tracking a w A 0.8 input was considerably greater than with

a v & 0.3 input. The problem was in maintaining a rhythm. With v & 0.8 it

was generally found that the amplitude of the input envelope changed too rapidly

to allow rhythmic arm motions. With v & 0.3, the reverse was the case; rhythmic

arm motions could be utilized a great deal of the time (with only intermittent

intervals of the input amplitude envelope changing too rapidly). Further, with

the v = 0.8 input it was found that the input rhythm frequency appeared (sub-

jectively) to change quite rapidly from one "half cycle" of the envelope to the

next. This frequency changing was quite obvious to the tracker, but was not

immediately apparent on glancing at a time trace of the input. Apparently, a

pilot tracking an input waveform is more rhythm sensitive, due to his proprio-

ceptive feedbacks, than an observer looking at a pen recording. This observa-

tion has considerable significance if one w_uts to make maximum use Of a pilot's

capabilities of perceiving coherence in a waveform.

Thus the division between signals that retain their basic sine wave charac-

ter (i.e., subjective predictability limit) is somewhere between v = 0.3 and

0.8, with w < 0.3 being "s_0jectively predictable" and v > 0.8 being '_npre-

dictable." Characterizing the input coherence in terms of v is based on its

empirical relationship to subjective predictability (which seems reasonable

per the preceding paragraphs) and on theoretical grounds, as we shall see later
in this section.*

Elkind (Ref. 21) speculated that the operator attempts to generate a sinu-

soidal response and then modulate it to reproduce the envelope of the input.

Particularly for the higher center frequencies, we feel that the pilot attempts

to track the peaks where the signal is large and the velocity is zero, thereby

making it easier to observe. Based on both subjective and objective considera-

tions, we have postulated the "Successive Peaks Hypothesis" which says: In

tracking a narrowb_nd input, the pilot soon recognizes the basic sine wave

character of the signal, generates a sine wave output, and attempts to aim it

at the next peak, based on his observations of successive earlier peaks. Since

for small v the envelope varies slowly compared to the center frequency, the

pilot could estimate the next peak height by observing two peaks and extrapo-

lating the slope. Various models of this type were investigated, but only the

simplest version of the Successive Peaks Hypothesis was used extensively, viz.,

The pilot, having learned the average period between peaks,

observes the value at just one peak top and then uses this

to scale a prelearned sinusoidal response amplitude at the

expected time of the next peak.

*Theoretically, the predictability of a bandpass process depends only on

the bandwidth, _, as Elkind (Ref. 21) notes. However, his data indicate that

both bandwidth and center frequency influence the operator's behavior. This

is consistent with the theoretical results in Figs. 8 and 9 which indicate

that points of highest correlation (i.e., at To) depend on w = A/f o rather
than A alone.
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Particularly if the narrowness index, v, is small and the center frequency

falls in Range II or III of Fig. 4, then we would expect the pilot to have pro-

gressed up through the SOP phases bo the Precognitive mode (Fig. 2c). For these

assumptions and conditions, the pilot model is dominated by the feedforward

(open-loop) operations (Ypi), on the most recent peak value of the forcing
function.

_. KalmanFilter Pilot Model

For mathematical tractability we shall further assume that the pilot produces

a continuous output, m(t), based on a continuous observation of the forcing

function, i(t), but evaluated one average period earlier. When the input is

at a peak this policy is identical to that in the Successive Peaks Hypothesis.

Between peaks there is very little new information since the envelope is changing

slowly. Thus the use of a pilot model that continuously uses input values is

a good approximation to one that uses only the most recent eak. We further
assume that the remnant is negligible, as indicated bythe e_/_2 and P_ data of

Fig. 4 in the assumed frequency region.

The detailed derivation of our model is given in the appendix where we assume

that the narrowband forcing f_nction has a Gaussian distribution. The pilot

tries to minimize the expected value of the squared error, given that hehas a

continuous observation of the forcing function one average period previous

[i.e., i(t--To) ]. As in Fig. 2b, the tracking error is:

e(t) : i(t) --m(t) (3)

and for our problem, Kalman's results (Ref. 20) indicate that the optimal con-

trolled output, _(t), which minimizes the ensemble average squared error is the

conditional expectation of the present ir_ut given the observed value of the

input, i.e.,

re(t) = E[itlit_To ] = itP(itlit--To)dit (4)

The conditional probability of it given it_To with a Gaussian distribution

is given in Eq. 8-24 of Ref. 22 as:

(it -- @Toit--To )2]P(itlit_To ) = _To_2_ exp -- 2_T2 (5)

where PTo = p(To) , see Fig. 9

o 2 (1 2)o To = -- PTo

o2 = variance of it (same as for it_To )

Solving Eq. 4 for the conditional mean yields:

_(t) = p(To)i(t--T o) (6)
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which is a linear weighting, p(To), on all the observed data [i(t-To) in this
Case ].

These results indicate that having observed the value at a past peak, the

ex!0_ected value one average period ahead is attenuated from the past value

[given by p(To)] and is Gaussianly distributed about this v_]ue with a variance

given by _T2 = (1-PTo2)_ _. The function P(To) appears in both the mean and
variance, and this depends on v (Fig. 9). Thus v is the important predict-

ability parameter, both theoretically as well as empirically.

Taking Fourier transforms of Eq. 6 yields the describing function for the

Kalman Filter model for this feedforward operation

ypiy c _- AI (jLo) -- p(To)e -jL°TO (7)

where p(To ) = sin _v (see Fig. 9)
_v

This is a gain and time delay of one average period where the gain is the corre-

lation coefficient for forcing function values separated by one average period.

The Feedforward model is shown in Fig. 10. For w>> O, Fig. 9 shows that

there will be appreciable variance, _To, about the optimal estimate, hence there
wi'll be appreciable tracking errors to correct. Consequently, for generality, a

compensatory block (Yp_) is included in the overall Pursuit-level model. The

closed-loop response w_en a YPi and a YPe are present is:

M (YPi + YPe )Yc
_ = (8)
I I + YPeYC

which, of course, reduces to Eq. 7 when YPe is not present. The more general

model given in Fig. I0, with YPe present, will be useful in explaining data

i 1

Human Pilot

(.sin w'v i6iwT°

I,
i I

m+m__.._ ! 1
-/--_ Ype I-

e L___I

I

I ,

I, I
I

m

Figure 10. Feedforward Model for Tracking Narrowband Inputs (Pursuit Display)
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trends in situations where the Feedforward model assumptions no longer hold.

Notice further that for widebsm_d inputs, where v -_-I .0, this model causes the

YPi block to be attenuated as p(To) -_-0, leaving YPe as the dominant block.

Figure 11b shows the Feedforward model fit to some of Elkind's classic

data for pursuit display, high center frequency, narrowband forcing functions

(Ref. 12). Figure 11 also illustrates compensatory/pursuit display differences

to be discussed later. In Fig. 11b only the two highest center frequency,

pursuit display data cases are fit with the YPi model (since w is greater than

0.5 for the other cases). For these cases the model describing function is YPi'

which has a 360 deg phase lag at the center frequency (Eq. 7). In Fig. 11b

we have plotted the model fit centered at zero degrees since the data is cen-

tered there.* The _plitude fit is close to the data while the phase fit is

excellent, particularly at fo = I.68 Hz (which is the most predictable case,

being in Range III and having a narrowness index less than 0.3. Examination

of the lower frequency Pursuit display and all the Compensatory display cases

indicate that the pilot model is not YPi alone since this would yield phase data

centered On -360 deg (or plotted around zero degrees). Eq. 8 reveals how a YPi

(with a large time delay) and a YPe can combine to give a closed-loop phase

response that does not reveal the large lag in YPi" Note that the factor

(Ypi+YPe) in Eq. 8 is evaluated by adding up the real and imaginary parts;

thus obliterating the effect of the 360 deg phase lag in YPi" Thus, of the

eight data conditions in Fig. 11, only the two highest center frequency pursuit

display cases reveal that the pilot has a 360 deg phase lag when processing

narrowband forcing functions.

For the compensatory display case, the optimization problem is changed in

that the pilot no longer can observe the forcing function directly. Instead,
he must obtain information on the forcing function properties via his proprio-

ceptive feedbacks. This shows up as Ypp in the Pursuit mode in Fig. 2b.
Elkind's compensatory data (Fig. 11a) e_hibit lower gain and more phase lag,

indicating that he cannot do as well when less information is displayed, i.e.,

his knowledge of the input via Ypp is contaminated by remnant.

We have also briefly looked at more complicated versions of the Successive

Peaks Hypothesis, particularly the version where the pilot uses two peaks and

tries to extrapolate the slope (see appendix). The Kalman filter for this cas_

also has a 360 ° phase lag at the center frequency, although it

is not a pure time delay. For fo = I .2 Hz, the phase curve for this model

tends to approach the data closer than the simplest model, although the ampli-

tude fit worsens. Further effort along these lines, possibly involving other

terms in the optimization criteria, is obviously warranted. However, note that

the simplest possible model explains the major data trends, namely: the gain

reduction with increased w, and the large time delay.

*Note that the cross-spectral measurements used in Ref. 12 yield phase

angles which can be off by a multiple of 360 deg. Cross-correlation measure-

ments would resolve this, i.e., from Eq. 6: Rim(T) = o(To)Rii( _-To)- Rii(_)

is maximal at T = 0 and this maximum will appear in Rim(T), but shifted by To.
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Taken as a whole, the model and the data reveal that achieving the

Precognitive level of SOP has some penalties. For nearly perfectly pre-

dictable inputs, the YPi loop is dominant, but has a rather large time delay

of To seconds. For this reason, a YPe loop may be maintained just as a protec-

tive measure. For any appreciable unpredictability (e.g., w " 0.3), both the

YPi and YPe loops must be maintained, possibly with a penalty in pilot workload.

Furthermore, detection of the statistics required to set optimal gains [e.g.,

p(To) ] and also optimizing YPi versus YPe, requires a high order of natural

ability, motivation, and training, especially when compared with a simple com-

pensatory operation on the perceived error alone. These problems, as well as

effects of controlled element perceptual and neuromuscular remnant, and control

proprioceptive properties, expose a large area for future investigations.

F. SUMMARY AND CONCLUSIONS

The research reported here is part of a long-range program to establish a

comprehensive theory of manual control displays, to develop experimental tech-

niques, and to refine and validate the theory. This facet of the program was

concentrated on factors affecting the tracking of quasi-predictable displayed

inputs such as rolling terrain and ship motions. It was necessary to first

establish a scheme for gradating the range of inputs from "subjectively pre-

dictable" to "subjectively unpredictable." This was done, concurrent with some

exploratory experiments and analytical model building for tracking pure sine

wave and narrowband signals. This revealed the objective signal parameters

related to subjective predictability (in the tracking context), and also

explained some of the classic data from sine wave and narrowband tracking.
We were able to fill in some of the long-vacant blocks in the Successive

Organization of Perception structure with simple, testable, and efficient

analytical models.

The specific conclusions from this work are as follows:

a. Two main dimensions, or qualities, relating to the subjective

predictability of displayed tracking signals were found:

@ Waveform Shape Complexity--related to the topological

features of the signal (i.e., sequences of lumps and

bumps) over a given short period.

@ Signal Coherence--related to time variations in the

waveform shape parameters over longer periods; this

dimension includes periodic, narrowband, and noise-

masked signals of various shape complexities.

Gradations within a matrix_ of these dimensions are given in

Table I of Section C.

b. A tentative model, given in Ref. 3, for tracking "perfectly

predictable" periodic waveforms was refined and validated by

a simple sine wave tracking experiment. Measures of normalized

error and correlated output power, as well as introspective

comments on the tracker's strategy, were made, to reveal the
active blocks in the Pursuit-level SOP structure. The data

revealed that various combinations of feedforward operations
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on the input (Yp_4) proprioceptive, operations on limb output (Y_)

and residual error correctmng or phase locking operations (Yp_D_
were evident in each of four frequency ranges, it is now evident

that this classical case, which has often been considered as pure

Precognitive behavior, actually consists of a rather complex
combination of Pursuit-level elements.

Co Analysis of optimal tracking for a narrowband process showed that

the subjective predictability should be a function (Fig. 9) of

the "narrowness index," v = bandwidth/center-frequency. Both

theory and subjective data from an exploratory experiment indicate

that a narrowband signal is "predictable" if v < 0.3, and "unpre-
dictable" if v > 0.8.

do For predictable narrowband inputs in the frequency range for the

best Pursuit level of SOP, the pilot's prediction apparently

depends on the average period and amplitude of successive peaks

(Successive Peaks _pothesis). The operations on the input were

modeled by a simple Kalman filter which showed that the optimal

controlled output would be attenuated by the factor (sin _v/_v)
and delayed by one average period. Comparison with Elkind's

earlier bandpass data shows good agreement for the predictable

case where v <_ 0.4. For higher v, this model attenuates the

feedforward YPi loop and requires a compensatory loop for error
corrections.

e. The one-period delay, which is the price paid for the optimal

feedforward operation_ implies that this higher SOP level

would be more vulnerable to sudden changes in the input than a

pure compensatory mode.

Much work remains to be done to refine these higher level SOP models,

especially for less ideal controlled elements and displays_: and for more
complex waveform shapes.
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AFR_DIX

BANDPASS SIGNAL PROPERTIES

In the following sections we shall briefly state the various properties

of bandpass signals (based on results from Ref. 19) and note the special

features involved in tracking these inputs compared with random-appearing

low-pass inputs.

POWER SPECTRAL DENSITY AND AUTOCORREIATION

A Gaussian random variable with a rectangular approximation to a band-

pass power spectral density is shown in the sketch below. The signal is x(t)

Power

Spectral

Density

_xx(f)

-_1 A t---

: f.-_I1[___..,_ Half Power Point

J=,i\
, = Frequency

fo

Figure A-I. Narrowband Spectrum Properties

where _ = bandwidth between the half-power frequencies [Hz]

fo = center frequency [Hz]

H = the effective height of the narrowband portion of the spectral

density as_defined in Eq. A-I below [(units of X) 2 per Hz]

The "narrowness index," v, of this spectra is given by the ratio of band-

width to center frequency: v m_/fo" This key parameter will turn up

frequently in succeeding formulas.

The variance a2 and effective spectrum height H are defined by:

_0 °°

,_2 = Cxx(f)_ = Ha (A-I)
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a is an important normalizing par_ieter for someof the res_Its in the
rest of this appendix.

The experi_mentaldetermination of Gby time averaging is given by

Xfo _e2 = _- x2(t)dt (A-2)

where T is the run length.

However, this will be a random variable. The ensemble average value of

at is _2 the true variance. Reference 19 shows that the standard devia-

tion, s, of the measurements of _ about _2 is

s . I
(A-3)

for TZk >> I.

Note that this doesn't depend on fo"

For an example calculation for carrier deck motion signals we have

_ 0.04 Hz, which is a typical value for heave motions. This

yields for various run lengths:

T(see)

10 100 1000

1.6 o.5 o.16
a2

Thus it takes a fairly long data run to accurately determine the variance

for typical narrowband data.
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The autocorrelation R(T) is given by the inverse Fourier transform of

the power spectral density and, when normalized by the variance, is given by:

p(_) R(T) : [sin (_A)r]_ o2 [ (_) - cos_oT (A-_)

where

co

R(_) = _0 _=(f) cos(2_f_)_

2_

ab = 2_f° = T-
o

I (or period of a sine wave at
To = K° the center frequency)

Note that O(_) _I.0 as T--,-0 as can be seen in the example auto-

correlation sketched in Fig. A-2. Thus the autocorrelation resembles that

Normalized

Auto-Correlation

p(v) sinTrv

1.0 f w'u

/
/

Figure A-2. Form of Normalized Autocorrelation for a Narrowband Process

for a sine wave at the center frequency (which would be cos _o T) but with

an envelope [sin (_A)T/(_)T] that drops off slowly compared to the center

frequency. Notice that portions of the signal separated by To sec (one

period of a sine wave at the center frequency) are highly correlated, i.e.,
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To sec after a peak there is likely to be another peak. This high corre-
lation at T = To decreases as the narrownessindex, v, is increased.

This last feature can be seen in the ex&mpletime history shownin

Fig. A-3. This is a section taken from a signal generated by adding together
numeroussine waves of equal amplitude and arbitrary phase. The center

frequency was fo = I. 17Hz and the bandwidth was A = 0.38 Hz, yielding

v = 0.32_. The sine wave character of the signal is evident as is the

slow time variation in amplitude and phase. The phase effect can be judged

by comparing the peak spacing with that which would result for a pure sine

wave at the center frequency. Another feature that occurs occasionally

through a run is a "phase reversal." Figure A-3 shows the cc_puted phase

of the signal (relative to sin _o _) and illustrates both the gradual phase

changes over most of the cycles as well as the abrupt phase reversal.

I_ROBABZLITY DENSITY AND CONDITIONAL I_ROBABILITY DENSITY fUNCTIONS

Let us consider those narrowband signals which have approximately

Gaussian amplitude distributions over long time intervals. Thus we have

(x-m) e
p(x) = I--!--- exp (A-9)

a"_- 2o2 J

where m = the mean of x

o2 = the variance of x

The fo_ of Eq. A-5 is helpful in interpreting the conditional probability

density of a future value (To sec ahead) of the signal given the present

value_ i.e._ of x I = x(t +To) given x2 = x(t). This probability density

is (using values of x nolnnalized by _),

_ (xI --PToX2)2_]

I exp ..... (A-6)

P(XIIX2) = _.(I--p2) 2(1--PTo 2) J

where = p(To).
0T o
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The conditional probability has a Gaussia_ distribution with mean

and variance OTo2 = (I -- pT2) (Ref. 22). Notice that the varianceDToX2

is independent of the current value of the signal, x2, i.e., no further

operation on the observed data (x2) will reduce the variance. Thus the

best estimate of the future signal value, given the current value, is

the conditional mean, PToX2 where

OTo P(To ) sin_v_v (A-T)

This says that the mean of the conditional probability distribution is

always less than the current value of the signal.

We are also interested in the likely future value of the signal, given

the current value and a past value each separated by To sec. The condi-

tional probability density function of x I = x(t + To) given x2 = x(t) and

x 3 = x(t-T o ) is given by

P(Xl,X2,X 3)

P(XllX2,X3) = (A-8)
P(X2,X 3)

Using Eq. 8-40 of Ref. 22 to evaluate each of the multivariate joint

probability density functions in Eq. A-8 yields (after much algebra)

a Gaussian distribution of the form of Eq. A-5. The conditional mean

is (again using values of x normalized by o)

{P2 +pI_ +{Pl--P21

mb = \I +PIJ x2 \'11p_'J d (A-9)

where pl = p(To) =

P2 = p(2T°) :

d = x2--x 3 =

"_2 -_

autocorrelation evaluated at TO

autocorrelation evaluated at 2T o

difference between past two samples
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Thus the meanof the distribution dependson the correlation between

the samplesas well as the magnitudes involved. Thevariance about the
conditional meanis:

2 (l--P2)(1 +P2--2P12)

% = 2 (A-10)
1 -Pl

Note that this is independent of the signal amplitudes involved--it

depends only on the various correlations between the samples.

Examples of the weighting coefficients PT , Ax2 and A d as well
o

as the variances OTo and _b are shown in Fig. A-4. These curves show

that the conditional mean parameters decrease and the variances increase

as v increases. Note that, in the case where both the present and a

past value is used, the weighting on the difference is larger than the

weighting on the current value. The variance is smaller for the two-

data-value case than the one-data-value case, especially at low v.

AVERAGE NUMBER OF AXIS CROSSINGS PER SECOND (No)
AND DISTRIBUTION OF AXIS CROSSING8

Figure A-3 illustrated that one "cycle" of a bandpass signal is of varying

length, sometimes shorter and sometimes longer than that of a sine wave at

the center frequency. Conceptually, the "average" frequency of a bandpass

signal is given by the average number of axis crossings per second (No) ,

whereas the distribution of axis crossings about the average is an indica-

tion of the variation in frequency.

For a Gaussian random variable the average number of positive and nega-

tive going axis crossings per second is given by (Ref. 22)

No I [--Rxx(T) ] I/2= = 2fo_+u 2 (A-11)
Rxx(T) _=0

where
(A/fo) 2 v2

U 2 =
12 = 1-"2
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Legend:

Expected Value of Signal To sec in Future

!) Using Current Signal Value

Conditional Mean = PToX2

_2 = current value of signal

Variance = I -PTo2 = GT_

R) Using Current Signal Value and Value To sec
in Past

Conditional Mean

x2 =

d =

Variance =

mb = Ax2X2 + Add

current value of signal

difference (current value

minus value To sec in past)

' I ' I ' I ' I '

.8

Mogni'ude.6 L __/ _crb -

O_ I I , I ,"_.2 .4 .6 .8 1.0

u = A/fo

Figure A-4. Scale Factors for the Conditional Mean Parameters

and Standard Deviations
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2
For a narrowband process (v < I) so u << I, and No becomes approximately

No -" 2fo(I +_ (A-12)

Thus the average number of axis crossings per second is essentially the

same as that for a sine wave equal to the center frequency, even for

values of v that aren't very narrowband.

The distribution of axis crossing times spreads out about the average

as v grows. The probability density of the interval between axis crossings,

T, is, using an approximate relation from Ref. 19

2 _oo-I + u 2

where Too is To/2 or the axis crossing interval for a sine wave of

frequency fo" Examples are shown in Fig. A-_. These are symmetric

about T/Too = I. The spread of the distribution increases as v increases.

A measure of the spread* is given by the average absolute deviation about

the mean

(A-14)

which increases linearly with v.

*The variance cannot be found for the density function given by

ER. A-13 since the integral will not converge.
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The probability that an axis crossing falls within a given interval on

either side of the mean is given by

I--7) < -- < (I +7
-- Too -

I I

,2 2/

(A-15)

where 7 = a fraction of the mean axis crossing interval

Various values are tabulated in Table A-I on the next page. If v = 0.4 then

87 percent of the axis crossing intervals fall within _+20 percent of the

nominal. In addition, Eq. 15 indicates that the same probability results

for all values of v and 7 which have _he same ratio.

Thus, the smaller the relative bandwidth, the more one could rely

on the duration of the next "cycle" of the signal.

TABLE A-I

PROBABILITY THAT AXIS CROSSING INTERVAL FALLS

WITHIN _+7 OF NOMINAL (RECTANGULAR BANDPASS SPECTRK)

NARROWNESS

INDEX,
1/

0.1

0.2

0.29

0.4

0.67

FRACTIONAL INTERVAL, 7

0.05 0.1 0.2 0.4

0.87 0.96 0.99 1.oo

0.6.5 o.87 0.96 o.99

0.52 O.77 0.92 O.98

0.40 0.65 0.87 0.96

0.25 0.46 0.72 0.90
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A%_AGE _,"_---._.OF MAXIMA _ SECOND

The average number of maxima l_er second, Nm, is

Nm : fo +u2/ (A. 16)

fo for v < 0.5

which verifies the observation that a narrowband process has, on the

average, essentially as many maximaper second as a sine wave of fo(Hz).

The average number of maxima per second above X = A o

(for Aomuch larger than _)

=asis
O

• No
NAo = "_ e-(a°'2) (A-17)

2/

"-foe--(ao2/2)

For small narrowness index, v << I, this can be inverted to give an indica-

tion of the average time between "extreme peaks" (maxima above Ao)

Tao -" _ (A-18)
N_

- Toe(aO2/2)

i.e., the time between extreme peaks is larger than the axis crossing

interval. Example values are

ao = _/o %,o/_O

2

2..5

3

7.4

23.3

9O
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For the signals in Fig. I the averageperiod is on the order of 10 sec.
Thus the average time betweenmaximaabove2_ is about 74 sec.

CONCLUSIONS

We have sh_n that a narrowband process has certain features that

follow from the basically sine wave behavior (with slow time variations)

in amplitude and phase. Some key properties are as follows:

I. The average frequency and number of peaks are close

to that of a sine wave at the center frequency.

, The average absolute deviation of the period about

the average period increases as the "narrowness

index" (v = Z_/fo) increases.

, The average number of maxima above a large level

is essentially independent of the bandwidth but

a strong function of the center frequency and

signal variance.

_o The true variance of the signal must be known if

many of the results in this appendix are to be used.

However, it takes a long time to measure this since

the signal variations occur at rates related to the

bandwidth (which has a long period) rather than the

center frequency (which has a short period).

Fairly accurate estimates of future signal values

(one average period ahead) can be made using just

the current value or the current value and a past

value one-average-period back. Thus, after observing

two peaks, one can make a good guess at the likely

size and location of the next, especially for small

narrowness index, v.
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20. Decision Processesin the Adaptive
Behavior of HumanControllers*

Ani! V_ Phatak** and George A. Bekey***

ABSTRACT

This paper is concerned with the development of a decision algorithm which

simulates the rapid adaptive behavior of human controllers following sudden

changes in plant dynamics. The control of a VTOL aircraft in hover following

failure of the stability augmentation system is used as a specific example.

The decision algorithm is based on the assumption that the human controller

recognizes certain pattern features in the error-error rate phase plane.

Experimental data, obtained from pilots facing four possible alternatives

following the time of failure, are presented. The proposed decision algorithm

is developed and digital simulation results are discussed. A theoretical justi-

fication for the algorithm, based on statistical decision theory, is presented
in the Appendix.

1. Introduction and Background

Mathematical models of the steady state tracking behavior of human operators

in manual control systems have existed for a number of years. However, only

recently attempts have been made to obtain quantitative data on the tracking and

decision making behavior of human controllers in certain non-stationary situa-

tions. This paper deals with the mathematical modeling of the decision pro-

cesses involved in the behavior of trained human controllers in response to

sudden changes in the controlled element dynamics.

*This research was supported in part by the National Aeronautics and

Space Administration under Grant NGR-05-018-022. The assistance of

Systems Technology, Inc. in providing the experimental data for this

study is gratefully acknowledged.

**Department of Aeronautics and Astronautics, Massachusetts Institute of

Technology, Cambridge, Mass.

***Department of Electrical Engineering, University of Southern Caltfo_ia,

Los Angeles, California.
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Specifically, the time-varying control task examined in this paper is that of

a VTOL aircraft in hover whose stability augmentation may suddenly fail.

These failures are so chosen as to result in overall closed-loop system insta-

bility unless the human controller rapidly modifies his control strategy to that

appropriate for the new dynamics. This example provides a specific realistic

control situation to study human controller adaptation.

A number of investigators in the past [3-13] have studied human controller

adaptive behavior following a change in the controlled element dynamics.

Early work performed by Sheridan [3,4 ] was concerned with human controller

adaptation to smooth changes in the plant parameters and did not focus on the
decision processes in the controller.

Experiments by Young, Elkind, et al.[6, 7] were among the first to deal

with adaptation to sudden changes in the order and gain of the controlled element

dynamics. A schematic model incorporating various phases of human controller

response and decision making was proposed by Elkind, Kelly and Payne [7].
The partitioned phases of their model are as follows:

• steady-state tracking of pre-failure plant dynamics

• detection of a change in plant dynamics

• identification of the change

• stabilization of overall closed-loop system

• reduction of accumulated error

• steady-state tracking of post-failure plant

Elkind and Miller [10-12 ] went further and suggested a model for detection

and identification of a change in plant dynamics based on statistical decision

theory. The identification phase was considered as a multi-hypothesis

detection problem whose outcome was the estimated state of the new plant

dynamics. No feedback procedure was given to correct for probable errors

in plant estimation, and neither was the proposed model simulated to show its

overall feasibility.

Models based on the partitioning of the controller's adaptive response into a

finite number of distinct phases are not complete unless the logic involved in

switching between the models for the different phases is identified. This study
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presents a complete on-line algorithm which models the decision control

logic in human controller adaptation to a specific but realistic time-varying
control task.

2. Mathematical Formulation of the Adaptive Co._ro! Problem

The human controller's task is illustrated in Figure 1. This type of manual

control task, where the operator's visual input consists only of the difference

between input and system response is known as "compensatory tracking."

Assume that the plant in Figure 1 may be represented by a linear vector

differential equation of the form

I_n=F(t)m(t)+G(t)c(t)+H(t)r(t), 0< t < T m(0)= rn
s O (1)

where m = [m , m ,..., mn]T is an (nxl) state vector, c is a scalar control1 2
variable, r = [r 1, r2,..., r_] T is a (qxl) transient plant input vector; F(t),
G(t) and H(t) are (nxn), (nxl),qand (nxq) piecewise constant matrices, respec-

tively. T s is defined to be the stopping time, that is, the time at which the
adaptive process terminates.

Define tf = time of occurrence of failure; then let

[F(t), G(t)] It< t = [Fo, Go]
I f

and H(t) It<t f = H ° = [0].

(2)

(3)

where F o, G and H o are constant matrices and correspond to the prefailure
plant configuration. Following failure, the plant dynamics become one of k

possible alternatives,

[F(t), G(t)] I t_>tf = [Fi, Gi] , i=l, 2, .... k (4)

and H(t)l t>_tf= Hi, j=0, 1, 2, ..., q (5)

where q is the number of alternative transient plant input disturbances. Thus,

there are, in theory, { k x (q+l)} number of failure control situations that a
human controller could encounter and over which he must maintain control

of the plant.

431



e

) ERROR-

HUMAN

OPERATOR

/

STICK- I DYNAMICS

OUTPUT 1

/

m

SYSTEM
OUTPUT

Figure 1. Human Controller in a Compensatory Tracking Task

There are two different types of information available to the human

controller, on which he can base his control strategy. One class is the

explicitly displayed information as in the displayed error state vector ed(t ) .
It is assumed that error and error rate are the only directly perceived

variables for the human controller; hence,

ed(t) = [e(t), _(t)]T (6)

In general, the displayed error will differ from the observed error due to

physiological limitations and observation noise. However, these effects

will be ignored in the following discussion and the displayed and observed

errors will be tacitly assumed equal to each other.

The second kind of information accessible to the controller is implicit in

nature and might include such elements as a description of the observed error

state patterns (via a pattern transformation operator acting on the observed

error state), and some form of knowledge about his internal compensation or

equalization strategy. Thus, let

y(t) = Ty(ed(t)) , y(0) = Y0 (7)

represent the mapping of the displayed state vector ed(t ) into an implicit
information pattern vector y(t), of say, dimension p. Similarly, define s(t)
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as the vector denoting the controller's estimate of his internal equalization

structure. The dimension of s(t) equals the number of discernible alternative

failure control situations. The operator thus has a multi-vector feedback
signal

z(t) = it, ed(t), y(t), s(t)] T (8)

available to him for decision making and control. Note that the vector ed(t ) is
continuous in time while the vectors y(t) and s(t) are most likely to be discrete

or piecewise constant. Also, z(t) is a vector random process.

The aim in solving the adaptive control problem is to find a control policy
in the form

c(t) = v(z(t)), v e V (9)

where v represents an "acceptable" adaptive controller structure from the set

of admissible human controller adaptive structures'_. Notice that even

though the controller, v, is assumed to be deterministic, z(t) and hence c(t)
are random processes.

In principle, the determination of an optimum controller structure for £he

given task could be done analytically, provided that a criterion of performance

is specified. However, the criterion used by a human controller in adaptive

situations is unknown. Furthermore, even if a cost or criterion functional

could be specified, solution of the problem may require a prior knowledge of
the statistics of the time varying plant dynamics and results are difficult to

obtain, except for low order systems without state variable constraints [ 1, 2 ].

In order to avoid the difficulties associated with a purely analytical approach,

this study uses a heuristic interpretation of known empirical data from past

research on manual control to hypothesize a human controller decision and

adaptation strategy. A mathematical plausibility argument for the resulting

algorithm is given in the Appendix.

3. Experiments

The specific control task studied here is shown in the block diagram of

Figure 2. At failure, the outputs of the rate and/or attitude sensors either (a)

go to zero suddenly, or (b) have step or (c) ramp transients to a non-zero

constant magnitude bias (bias = ±1.5 in. ). The above three kinds of failure

are referred to as soft, hard and ramp types of failures, respectively. Since

there are three possible plant changes and three likely feedback transients
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Figure 2. Human Controller in a Roll-Tracking Task

following failure, there are nine different failure situations that can be studied.

However, only six of these situations were studied herein. Table 1 shows the

types of changes in effective dynamics and failure transients encountered by
the human controller in this simulation.

Table 1. Time-Varying Control Situations Studied

Situation

Both loops fail to zero feedback

Rate loop fails hard

Rate loop fails to zero feedback

Attitude loop fails hard

Attitude loop fails ramp

Attitude loop fails to zero feedback



The failures listed in Table 1 canbe analyzedas transitions amongthe
corresponding prefailure and .... I_pos_-.a,,ure _,_,,,_s_.... _- shov..m, in Table 2. Here-

after, the four different types of stability augmentation and the resulting

plant configurations are referred to by letters A, B, C, and D, respectively,

Table 2. Effective Plant Dynamics

Type of Stability

Augmentation

A: Rate and Attitude

B: Rate Only

C: None

D: Attitude Only

Effective Plant Dynamics

1.7Z

[s2 + z (.6) (5.1)s + (5.1)2]

320. 0

s(s + 18.6)[sz + z(.66) (lO.4)s + (10.4)2]

.8

2
s

.7154

[sz- z (.z) (3.3) s + (3.3)z]

A typical experimental run lasted three to four minutes with the failure

occurring at a random time, one to three minutes from the start. The subject

was a well trained pilot and was given ten hours of training (180 transitions)

in controlling the plant for various system failures prior to actual experimental

runs. He was also trained in controlling the various plant configurations in

steady-state stationary tracking.

The instructions to the controller (an airline pilot) were as follows:

"This is a single degree of freedom roll tracking task in the

hovering VTOL. The flight control system will be failed in vari-

ous ways with the failures occurring at random and without warning.

The task is to keep the wings level and minimize the tracking er-

ror at all times. A bank angle of 50 degrees or more will imply
that the vehicle has crashed and hence the run will be terminated."
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The pilot was not given any details about the system dynamics, failure rate

or any other information which would tend to bias his control strategy. Train-

ing was the only source of learning available to the controller.

4. Formulation of the Model Structure

The human controller in response to a change in the plant dynamics must

modify his pre-fatlure control strategy to that appropriate to the new post-

failure plant for successful adaptation. If one assumes that steady state is

attained both before and after failure, then the controller's tracking behavior

under both conditions can be characterized by a describing function model [14].

For the particular control tasks and input signals, it can be shown [14] that

the human controller can be represented by a model of the form,

Yp (jw): c(j_) K (i® + zp) -(j_): e P (lO)
F.(jw) p (j_ + pp)

where Kp is the controller's high frequency gain, 1- is the controller's
effective reaction time delay and (Zp) -1 and (P)-l_are the controller's leadP
and lag equalization time constants. The value of Tp is assumed to be constant
for a given plant.

Estimated values of the four parameters in (10) were obtained from existing

operator describing function data for plant dynamics similar to those in

Table 2 [14]. These values are given in Table 3.

Table 3. Estimated Human Controller Steady-State Model Parameters

Augmentation K T Z P
P P P P

A: Rate plus attitude 8.0 0.40 3.0 0.05

B: Rate only 17.Z 0.Z4 Z = P
P P

C: None 3.8 x ID 0.40 0.20 >40
P

D: Attitude only 6.0 x 1_ 0. i0 0.20 >40
P
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Any adaptive model of the human controller must satisfy the boundary

constraints of pre-failure and post-failure steady-state operator models.

TbS.s implies that, following failure, the human controller model must detect

the occurrence of a failure and proceed with the modification required from

its pre-failure structure to post-failure steady-state requirements.

Obviously the modification must be based on some kind of identification of

post-failure plant dynamics, either explicitly or implicitly. Based on this

inductive reasoning, the adaptive model must include the following phases
and characteristics:

1) The pre-failure steady-state control strategy

2) Detection of failure in plant dynamics

3) Identification of post-failure plant dynamics and appropriate modifica-

tion of operator_As strategy

4) The post-failure steady-state control strategy

The phase following failure and prior to failure detection has been termed

the "retention phase" in the literature [13].

The four partitioned phases of the adaptive process listed above are

illustrated in Figure 3, which is a typical example of the transition data as

studied in this paper. It shows the human controller's adaptive response to

a failure of both the rate and attitude feedback loops which corresponds,

over the frequency range of interest, to a change in plant dynamics from a

simple gain to a double integrator (Type A to C in Table 2). The time at

which the stability augmentation failed is indicated by T. F. in the figure.

During the retention phase the overall controller-plant closed-loop

system is unstable, resulting in the rapid divergence of the error rate and

hence the error in the second trace of Figure 3. Hence the modification of

the controller structure following detection of failure must be sufficiently

fast compared to the dominant time constant of the system to avoid loss of
control.

A hypothetical model structure incorporating these requirements is shown

in Figure 4. The model shown includes a higher level controller (called a

Supervisor) capable of decision logic and able to recognize the steady-state

controller structure. The Supervisor inputs are the displayed error state

vector ed(t ) and the stick movement c(t). It is postulated that the supervisory

structure operating on ed(t ) can be subdivided into a sequence of four operations
as follows:
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Figure 4. Basic Structure of the Adaptive Model of the Human Controller

1) Pattern Transformation: An operator Ty that maps the displayed error
state vector ed(t ) into an element y(t) of a space of information pattern

vectors Y. Thus y(t) = Ty [ edit)] • y.

2) Pattern Classification: The task is to categorize the incoming pattern

vector y(t) into one of a finite number of pattern classes Yi' where Y = UiY i.
The number of pattern classes equals the number of discernible transition

response characteristics.

3) Plant Estimation: The estimator acts continuously on the incoming

decisions of the pattern classifier to give a continuous estimate of the current

discrete state gi of the plant configuration and transient disturbances; thus

gi = F [y(t) • Yi] , and

4) Controller Modification: A change in the control strategy that involves

modifying the controller parameter vector p(t) = [Kp, Z p, Pp, _]T
(corresponding to the four parameters of the human-ope_ato_de_cribing

function of (10) to that appropriate for the estimated state of the plant.

Thus p(t) = p(t) Jgi"
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The above sequence of four operations is shown diagrammatically in

Figure 5. The derivation of appropriate models for the four sequential

operations is discussed in the following section.

DISPLAYED
ERROR
STATE PATTERN

VECTOR VECTOR

ed(.,) I PATTERN I y(i') I PATTERN

_OPERATORI _ ICLASSIFIER

I T, I I

ESTIMATED CONTROLLER

PATTERN PLANT PARAMETER

CATEGORY lCONFIGURATION , VECTOR

y(t)(Yi I PLANT I gi ICONTROLLER ! P(t}lqi
_--- ', I = ',MODIFICATION _--

I ESTIMATOR I [RULE

Figure 5. The Structure of the Supervisor

5. Identification and Discovery of Pattern Features

In order to identify the patterns generated by the pattern transformation

operator, large amounts of actual human controller tracking data were

analyzed. More than a hundred tracking records* were studied in detail,

in order to identify patterns of system error, error rate and stick movement

which followed the onset of the plant transition. This inductive approach

proves to be necessary because of the lack of knowledge regarding the basis

on which the human controller selects patterns [15, 16] among his observed

variables. However, a theoretical (a posterior[) explanation can be given for

the human controller's choice of pattern classification, plant estimation and

controller modification procedures (See the Appendix).

Study of the error/error-rate phase plane data for various transitions in

the plant configuration reveals the following three pattern features. Together

they constitute a pattern vector. They are identified to be the following:

Pattern Feature PF -I: The differential change in the error phase

trajectory from pre-failure to post-failure conditions;

Pattern Feature PF -2: The path of the post-failure error phase tra-

jectory after the occurrence of the first error peak;

*Supplied through the courtesy of Systems Technology, Inc.
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Pattern Feature PF -3: The path of the post-failure error phase trajectory

following the occurrence of the second error peak.

Note that occurrence of the peaks is expected since the overall system

following failure is unstable in an oscillatory mode. Also PF -1, PF -2
and PF -3 follow chronologically in that order.

6. Classification of Pattern Features

A sequence of pattern features PF '-1, 2 and 3 constitutes a pattern vector.

The task of the pattern classifier is to categorize the three features sequentially

into separate regions that relate to discernible plant transitions. Decision

regions DR -1, 2 and 3 shown in Figure 6 have been identified by analyzing

actual transition data and serve to categorize the error phase trajectory
pattern in different classifications.

The classification of the pattern features PF -1, 2 and 3 in terms of the

decision regions DR -1, 2 and 3 is identified and proceeds as follows:

Classification of Pattern Feature PF -1:

On examining transition response data, it was evident that there is a

distinct change in the system response following the occurrence of failure.

Before failure, the observed variables follow a trajectory (with an average

!

0

I t

0

Y
Figure 6.
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Decision Regions in the Error-Rate/Error Phase-Plane
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value of zero) corresponding to the operator control strategy suitable for the

fixed pre-failure plant configuration. Following failure and prior to detection

of failure,the overall controller plant closed-loop system is unstable for all

types of failures, and this results in large magnitudes of error-rate and error.

The stick response after failure shows the expected retention phase, the

end of which is marked by a sudden movement of the stick. The error-rate

and/or error at the end of retention are large. Detection of failure by the

human controller seems to be based on the large differential change occurring

in the course of the error/error-rate phase trajectory from pre-failure to post-

failure conditions. It was noticed that in all types of failures the error phase

trajectory following failure emerged out of region DR -1.

Thus the failure detection criterion is as follows:

If,

ed(t) = [e(t), 6(t)]T IE DR-l:E DR-l:

Decide no failure has occurred;

plant configuration is of type A

Decide failure has occurred; plant
configuration is of type

where

Let

Then

t=T1 be the first time instant at which

ed(t ) ¢ DR-1.

(

sgn (_ (T1)) = )+ 1 if 6 (T1) > 0

- 1 if _ (T1) < 0

(12)

is a property of pattern feature PF -1 that is useful in the classification of

the remaining pattern features. Thus (11) and (12) constitute the decision

outcomes in response to pattern feature PF -1.
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Classification of Pattern Feature PF -2:

Pattern feature PF -2 is useful in recognizing ifthe post-failure plant

configuration is B (with or without failure transients) or B.

Thus given t >T1 and that sgn [ @(t) ] = -sgn [@(T1) ], the following feature
discrimination rule is examined:

If

ed(t) ¢

I DR-Z:

Decide that post-failure plant

configuration is of type 6.

Decide that post-failure plant
configuration is of type B.

(13)

Classification of Pattern Feature PF -3:

Feature PF -3 allows one to discriminate between the post-failure

dynamics of type C and C. Thus, given t>_T1, and that sgn[@(t) ] = sgn[@(T1)],
then the following rule is examined:

If,

ed(t)

¢ I _DR-3:
DR-3:

Decide that post-failure plant
configuration is of type C (or D)

Decide that post-failure plant
configuration is of type C.

(14)

It is hypothesized that the pattern feature classification rules, (11) - (14),

discussed above, are used by the human controller in estimating the post-

failure plant and as a result modifying his control strategy. The controller's

plant estimation procedures and his modification strategy are discovered on

examining transition data and are given next.

7. Plant Estimation and Modification of Controller Strategy

The human controller in the transition tasks studied herein must make

decisions regarding the state of the plant as the response unfolds in time

and does not have the luxury of continuing to make measurements of the

response indefinitely. The decisions, therefore, must be made on partial

or almost no information about the state of the plant configuration. The
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operator is thus assumed to choose a conservative strategy for plant estimation

and controller modification which allows him the option of correcting perhaps

incorrect decisions sequentially in time. Evidence from human operator

data indicates the choice of the following schemes for plant estimation and

controller modification.

Monitor pattern feature PF -1

If,

ed(t ) ¢ DR-l:
Decide failure has occurred

and that the post-failure plant

configuration is type B.
(15)

Then change controller parameter vector from

PA(t) : [Kp, Zp, Pp, %[; --* PB(t) = [Kp, Z

Continue thereafter to monitor pattern feature PF -2.

p, Pp, _p[: (16)

If the plant is not B

ed(t ) c DR-2:
Then decide that the previous plant
estimate was erroneous and that

the new estimate of the plant is con-

figuration C.

Consequently modify controller parameter vector from

PB(t) [Kp, Zp, Pp,% ]T T= B'_Pc(t) = [Kp, Zp, Pp, Tp]c

Observe PF -3; if

(17)

(18)

ed(t) c DR-3: Decide that the previous plant esti-
mate was wrong; new estimate of

the plant is configuration D.

Change controller parameter vector from

T . PD(t ) Zp, Pp, TPc(t) = [Kp, Zp, Pp, Tp] C : [Kp, Tp] D

(19)

(20)



m_,,¢ I1._ - (20) constitute the complete estimation and modification rules
that model humancontroller behavior for the given experimental situation.

8. Proposed Sequential Decision Algorithm

On the basis of the pattern classification, plant estimation and plant

modification rules discussed above, a sequential decision algorithm shown

in Figure 7 is proposed for supervisory control.

The algorithm includes decision and modification elements in a sequential

order. Note that the modifications in the operator model lead in discrete steps

to the new structure. The model parameters on switching are allowed to vary

from one trial to the next according to some suitable statistical distribution.

This flexibility can provide the adaptive model with the ability to display

run-to-run variability in response and hence make the algorithm inherently

stochastic. The range of parameter variations, however, must fall within the

stability boundaries.

The detection and id,entification scheme proposed is a sequential decision

making process that yields binary yes/no type decisions as the error/error-

rate trajectory unfolds in time. The specific criteria used are based on the

categorization of evolving error trajectory pattern features according to the

post-failure augmentation. The modification strategy is directly related to

the sequential plant estimation policy and a change of the plant estimate is

followed by a modification of operator controller strategy as required.

The complete algorithm for human controller adaptation shown in Figure

7 was simulated on a digital computer. Results for two sample cases,

namely (1) a soft failure from augmentation type A to type C and (2) a hard

failure from augmentation type A to type B, are presented in Figures 8 and

9 respectively. The corresponding phase plane plots are given in Figures 10

and 11 respectively. The trajectories in these Figures demonstrate the typical

characteristics of pattern features PF-1, 2 and 3 appropriate to the post-

failure plant configurations. Also notice that the stick response in Figure 9

shows the steady state bias of 1.5 "required to counter-act the hard failure

transient of 1.5" in the attitude feedback. For a more detailed comparison

of model response to human controller response under similar conditions,

see Reference 17.
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9. Conclusions

A mathematical model of the human controller's adaptive behavior in

response to sudden changes in plant dynamics has been synthesized. The

proposed model consists of a hierarchic arrangement of two parallel con-

troller structures. The principal Controller represents the steady-state

tracking behavior of the operator; the higher level controller, the "Supervisor,
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incorporates the decision processes necessary to modify the steady-state

controller in response to the estimated state of the plant dynamics. A theoretical

framework based on statistical decision theory (presented in the Appendix)

provides a rationale for the proposed schemes for detection of failure,

estimation of post-failure dynamics, and ensuring modification of the steady-

state controller parameter vector. The question of choosing the "best"

pattern features in the error phase trajectory, however, was not treated

analytically in this study and the problem is open to investigation.

Finally, the complete adaptive model of the human controller was verified

by comparison of simulated model responses to actual human controller data

for similar conditions.
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APPENDIX

Theoretical Basis for the Proposed Algorithm

The algorithm for supervisory control developed in this paper incorporates

the four sequential operations of:

1) Extraction of error phase trajectory patterns

2) Classification of the chosen patterns

3) Estimation of the state of the plant, and

4) Modification of the controller strategy to match the estimated plant
configuration.

As was pointed out in the text, a mathematical theory for the optimum

selection of the error, error-rate patterns is beyond the scope of this paper.

It is also assumed here that the human operator has stored in memory a file

of controller structures suitable to the finite number of allowable plant con-

figurations, any one of which he can retrieve instantaneously (time of

retrieval is assumed to be much smaller than the dominant system time

constant) if required. Hence, the operation of modification of controller

strategy becomes merely one of retrieving a model structure suitable to the

estimated state of the plant.

Pattern classification and plant estimation operations were identified and

modeled after a careful study of over one hundred transition response data

for the human operator. The objective of this Appendix is to present a

mathematical basis for the proposed schemes for operator pattern classifica-

tion and plant estimation within the framework of statistical decision theory.

The tasks of classifying the pattern features PF -1, 2 and 3 are considered

as problems in sequential binary hypothesis testing. For example, classifying

PF -1 involves making the decision whether the corresponding plant configura-

tion is A or A; similarly classifying PF -2 and PF -3 requires choosing

between plant configurations B or B and C or C respectively. Plant estimation

follows classification of each of the three pattern features and is defined as a

case of fixed length multi-hypothesis testing. Thus following the classification

that the plant configuration is -_ (that is, failure has occurred), the estimation

problem is to decide whether the plant configuration is B, C or D. The

number of alternative plant configurations for estimation reduces from three
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to two a._.-_^- _.u._.___.__l-_f{_,tionof PF -2 and to one following classification of PF -3.

Thus, a successive elimination procedure is used to identify _ pos+-f_ih,re_.......

plant dynamics.

TO r i 11 uz o..b L,..,.,..,. _ .......Before proceeding with the ..... ,_*'_ o _ ,h_ decision theory model, it is

necessary to make the following assumptions:

1) System error e(t) and error-rate 6(t) are the only source of information

available to the decision-maker of the Supervisor, and both are assumed to

be gaussian.

2) The Supervisor samples the error and error-rate periodically every AT

seconds and uses samples of Ae - the error increment and _6 - the error rate

increment, over each sampling interval, as independent inputs to the decision-

maker.

3) The Supervisor has available the separate probability densities for Ae

and A_, conditioned to the hypotheses that A or A is true, B or B is true and

C or C is true. Thus for A6, the Supervisor knows the probability densities:

"_l(& _IA), Zl(AelK), Zz(Ae!B), zz(_ el B), %(ALl c) and _3(_el_-).

Similar expressions are assumed to be available for Ae.

4) The Supervisor cannot distinguish between the densities for the individual

hypotheses in A and B. Hence,

and

_z(AelB) - tZ(A_ I C) E _2 (Ae] D)

Similar assumptions hold for variable Ae.

5) Samples of Ae are statistically independent; same is true for A_, and

6) The Supervisor has knowledge of a priori probabilities of the various

alternate hypotheses for the classification and estimation problems. For

example,

P(A) = q 1 and P(A) = 1- q

for the failure detection case.
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The background of hypothesis testing is given next.

A-1 Formalism of Statistical Decision Theory

The subject of hypothesis testing is best described by reference to

Figure A-1 which shows the functional form of the decision process used by

the Supervisor. The various elements in the decision channel of Figure A-1

are described as follows:

S." The set of possible events of hypotheses si, namely the hypothesis

that the plant configuration is A, B, C or D.

G(s): A priori probability density on S; fS G(s) ds = 1.

V:

F:

d (Ti/v) :

The set of observables v --/x_ (or Ae); one decision channel operates

on samples of/x_, and another parallel channel on samples of Ae.

Probability density on V, given s i ¢ S; fv_(V/Si ) dv = 1.

The space of concluding hypotheses Ti; here the concluding hypothesis

is that the plant configuration is A, B, C or D (or any composite set

such as A, B).

The decision rule, that is, the criterion for selecting some T i ¢ F
upon observing v c V. In this section the criterion chosen is the

Bayes rule.

v Fs

DECISION

Y

Figure A-1. Functional Form of the Decision Theory Models

Sequential Binary Hypothesis Testing

Suppose that

S = floUfll,(flONfl 1 = O) (A-l)
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and let

= th_ null hvDothesis that s e _0
_O ...... _

H I = the alternate hypothesis that s _ _21

(A-2)

Then the Bayes rule for sequentially testing the composite hypothesis HI

versus H 0 is a sequential likelihood ratio test as follows:

At the m th stage, compute the generalized likelihood ratio

where

Am(V)
£(v 1, v Z, -- v Is e s) ds= 7_ 1 ' m _1 ) °1(

7_ 0 _(v I, vz, --, VmlS _ I%O) <_o(S)ds

a0(s) = a priori probability density on _0;

(A-3)

_ilO Oo(S) ds = 1

gl(S) = a priori probability density on i_l;

J'121 Ol(S) ds = 1

and compare itto two thresholds L0 and LI. If

Am(V) _- h I : accept H 1

Am(V) _ L 0
: accept H 0

L 0 < Am(v) < L 1 : take another sample

} (A-4)

where c_ =

1-_
L 1 - and L 0 - _1 ot

probability of rejecting H 0 when it is true; that is,
probability of false alarm.

Probability of accepting H 0 when it is false;
that is, probability of miss.

(A-5)



The sequential likelihood ratio test (A-4) may be used for pattern classifi-
cation of features PF -1, 2 and 3,respectively. Application to PF-1 provides
the Bayes solution to the failure detection problem and is discussednext.

A-2 The Process of Failure Detection

It is assumed that there are two parallel decision processes operating - one
on/_6 and the other on Ae. Let

H 0 = the null hypothesis that the plant is in configuration A; and

H I = the alternate hypothesis that the plant is in configuration A.

The sequential likelihood ratio test for A6 is as follows: At the m th sample

stage, the likelihood ratio (A-3) reduces to (assuming B, C and D are

equally likely)

(A_I' _2' -- _ lye)
" ' rn (A-6)

Arn(A e) =
_(A_ 1, Ae Z, --, A_m_k)

Since/_j are assumed to be independent of each other

rn

ZXrn(A_) = II
j=l

Since _ is assumed gaussian, let

(A-7)

1 exp _-25; 2 . (A-8)

( ')1 exp - (A_ - ta ) (A-9)

I v) : 6x 2

where p = mean divergence rate following failure.

Assume 6A = 5_ _ 6 as the standard deviation of the observed error-rate
increment for both configurations A and X. Then,



A (_ _) = exp
m

_ j_l {_ej- _ {
5z T )

From (A-4), if

, - (. )e(mT) _. >- log L 1 + mj la 2 _t :

m

rn

m < _(mT) = e. <
log L 0 + 2 J

Accept H.; that
is failur eihas

occurred.

: Accept H^; that
U

is failure has not

occurred.

--<-log :

Take another

Sample•

(A-n)

For the detection of failures, one always wants to continue testing until

it is decided that failure has occurred. This can be guaranteed by making

condition 2 in (A-11) very unlikely. For this to be true, choose L 0 to be

very small; that is make fl, the probability of choosing H 0 when it is false,

negligible and near zero.

A sequential likelihood ratio test for the second parallel channel operating

on error may be similarly determined. A failure is said to have occurred

when either of the tests (such as (A-11))on error-rate or error terminates.

The failure detection criteria of the form (A-11) for error and error-rate

give rise to a rectangular decision boundary such as DR-1 in Figure 6.

Thus it has been shown that a theoretical basis exists for picking regions

such as DR-1 for failure detection.

A-3 Estimation of Post-Failure Plant Dynamics

Following the detection of failure one must estimate whether the plant

configuration corresponds to B, C or D. It is postulated that the estimation

process is a fixed length multihypothesis testing problem, and that this
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length is one sampling interval. This assumption is necessary because the

overall system is still unstable following detection and hence the identification

must be rapid enough to avoid loss of control.

The Bayes solution requires the knowledge of the following conditional
costs and a priori probabilities:

Cij = Cost to the operator if he decides hypothesis Hi is true

when hypothesis Hj is true; (zero when i = j)

qi = P(Hi) : a priori probability that H i is true.

(A-12)

For the problem at hand,

H 1 = Hypothesis that post-failure plant configuration is B

H 2 = Hypothesis that post-failure plant configuration is C

H 3 = Hypothesis that post-failure plant configuration is D

and

qi -- P(Hi) = 1/3; (B, C and D are equally likely).

Then the Bayes decision rule is as follows:

Select hypothesis H. for which
1

3

A.1 =

j¢i

£(v I Hi) Cij qj

is minimum. Earlier it was assumed that

£(v I H I ) = £(v IH 2) = £(vl H 3) = l(vl-_)

Thus, choose H. for which
1

3

A. 1 _,= g t( l E) c..
j =1 1j

is minimum,

(A-13)

(A-14)
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Decision rule (A-14) suggests the seiectlon of H. for which the total cost of
false alarm is the smallest. Actual transition _ata indicate that the human

operator chooses B as the estimate of the post-failure plant dynamics follow-

ing detection of _^..1L_._.... _. _rh_...... may be explained by saying that the cost to the

operator for choosing B when it is indeed B must be smaller than the cost u.

false alarms for choosing C when it is C or D when it is D.

Thus, an application of statistical decision theory has provided a justification

of the proposed pattern classification rule for feature PF -1 and the proposed

plant estimation strategy after detection. This approach can similarly explain

the remainder of the proposed supervisory control algorithm.
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21.Motion Scaling on One- andTwo-Axis

CompensatoryControl Tasks

HughP. Bergeron

ABSTRACT

Tests consisting of one- and two-axis closed-loop tracking tasks, with

and without motion, have been made to define areas where motion cues are

beneficial. Tests were made with reduced scaling on the motion to

investigate the minimum requirements of motion cues in those tests where
motion was found to be of assistance.

Little or no difference in the error measurements was observed in the

single-axis motion/no motion runs. Similar results were obtained when

comparing two single-axis tests with different pitch orientation. The

two-axis tests, which consisted of pitch and yaw and pitch and roll, did

however produce a difference in the error measurements in the motion/no

motion comparisons. A decrease in normalized tracking error and an

increase in the closed-loop system frequency was observed when motion was

added.

Tests were also run, in pitch and yaw only, in which the scale of the

motion input was reduced. These tests were performed by the subject in

sequence starting with no motion all the way to full motion and back down
to no motion. Each motion scale condition (none, 1/16, 1/8, 1/4, 1/2, and

full) constituted a test. The normalized tracking error remained

constant for full, 1/2, and 1/4 motion scaling but increased with a

further reduction in motion scaling.

INTRODUCT ION

It is well known that motion is an important factor in many simulations,

but it is not too well understood just what elements of motion are the

most important. For this reason many simulations use full-scale motion.

Experience has shown, however, that full-scale motion is very expensive.

This study was made to better define those areas where motion is

beneficial and to determine some of the requirements of motion inputs.

With this information one could analyze the simulation to be performed

and incorporate only those motion inputs necessary to obtain good

simulat ion re sult s.
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Previous works, references i and 2, have helped to define some areas

where motion is necessary. Also related works, reference 3 and 4, have

explained how motion is perceived as an input. This paper will attempt

to expand the defined areas where motion is beneficial and will present

a simple technique of reducing the motion requirements where motion is
found to be desirable.

DESCRIPTION OF APPARATUS

The tests were performed in a small one-man enclosure which was mounted

on a U-shaped frame. The U-shaped frame was pivoted on a rigid platform.

See figure i. This configuration allowed the enclosure to be rotated in

two degrees of freedom; i.e., two axes of rotation. The inner axis

which was a rotation of the enclosure within the U-shaped frame was

always defined to be a rotation in pitch. The outer axis was a rotation

of the frame on the platform and was defined to be either yaw or roll,

depending on the zero pitch orientation for the test. If pitch attitude

was such that the subject was in a sitting position, the outer axis was

defined to be yaw; whereas if the subject was lying on his back, the

outer axis was defined to be roll. Both axes were capable of continuous
rotation.

The enclosure contained a molded couch with appropriate restraints which

allowed the subject to be rotated to any position without undue dis-

comfort. The visual information was displayed to the subject via an

attitude indicator (8-ball). The plexiglass section of the enclosure

was covered to prevent the pilot from getting outside cues and/or from

being distracted. Control was imparted to the system by a 3-axis side-

arm controller mounted on the right side of the subject. Fore and aft

movement of the controller corresponded to pitch, side to side movement

corresponded to roll, and a twisting motion through the center of the

stick corresponded to yaw.

The dynamics used in the tests consisted of a combination of computer-

generated dynamics and the actual dynamics of the simulator. It was

necessary to incorporate the simulator dynamics into the tests since the

response of the simulator was not good enough to assume a one-to-one

input-output correspondence. The measured simulator dynamics of both the

inner and outer axes was s2 + lls + 40. The computer generated dynamics

was K/s.

A solid-state analog computer was used to generate the equations of

motion and to drive the simulator. The forcing function_ the control

inputs_ and the system error were obtained from the computer and recorded

on magnetic tape for later analysis.
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Figure 1. - Two-axis simulator. 
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The control task was a compensatory tracking task that consisted of

tracking a random disturbance function on an attitude indicator (8-ball).

The disturbance or forcing function was obtained by first passing the

output of a Gaussian noise source through two first-order filters. The

filters were adjusted for a break frequency of one radian per second. A

block diagram of the control system for one axis is presented in figure 2.

The tests consisted of controlling pitch_ roll_ and yaw in various

combinations of one- and two-axis with and without motion. A second set

of two-axis tests was performed in pitch and yaw only_ with the scale of

motion varied from run to run. Four NASA research test pilots and four

engineers experienced in tracking tasks were used as subjects. Prior to

each test the subject was allowed to practice_ first without the distur-

bance_ then with the disturbance, for the particular task he was to

perform. The length of the practice period was determined by the

subject_ but hardly ever exceeded 1-1/2 minutes. He was then given a

three-minute data run. A series of tests was never continued beyond one

hour and was halted sooner if the subject became fatigued. Also_ the

subjects could elect to rest for short periods between runs.

ANALYS IS

The data were analyzed by measuring the normalized mean squared error and

by obtaining the closed-loop system characteristics. The latter was

accomplished with the aid of an automatic-parameter-adjusting mathematical

I F°rcincj Ifu nction

.__ Display ]Visualpath , _Computer}____Enclosure ] Motion path _ Subject
-_ drive

Figure 2. - Block diagram of control system.
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model. The model is the humantrs_mfer i_,_,_n bud is _o_a in

reference 5- The method uses the model form

output _ KIT + KIK2 s

input (T + s) 2

where KI, T_ and K2 are allowed to adjust so that the output of the

model produces a good fit of the subject.

In the single-axis tests of pitch, roll, and yaw, no significant improve-

merit in control was measured when full-scale motion cues were added to

the no-motion runs. Neither was there any significant variation measured

in the control characteristics when comparing the single-axis pitch runs

in the two positions, the subject lying on his back and the subject in a

sitting position.

The two-axis tests, however, did show improved control characteristics

when full motion cues were added. The mean squared error was reduced to

about one-half that of the no-motion runs and the system frequency showed

a slight increase. These data prompted the study involving the scaling of

the amplitude of motion. In this study a series of two-axis pitch and

yaw tests was performed in which the amplitude of motion as compared to

the visual input was reduced in scale from run to run. These tests

consisted of six runs: full motion, 1/2, 1/4, i/8, 1/16, and no motion.

Figure 3 presents the mean squared error of the scaled motion tests for

one of the subjects. The pitch and yaw results are those obtained when

performing both tasks at the same time. Each datum point represents the

average mean squared error for several runs. Both sets of data_ pitch

and yaw, were normalized to i for the full motion value of the mean

squared error for each axis. The data show that the mean squared error

begins to change drastically at about 25 percent motion scaling and

doubles at the no-motion condition.

Figure 4 shows the average results for all the subjects. As in figure 3

the mean squared error remains the same as the amplitude of motion is

decreased up to the point of about 25 percent motion scaling, and then

increases rapidly to the no-motion run condition. The average data of

each subject were consistent in showing the change in mean squared error

at about the 25 percent motion scaling.

These averages however don't tell the complete story. Figure 5 presents

the individual data points of one subject for pitch, plotted for

four series of runs in pitch and yaw. The top group of points represents

two series of runs taken on a given day. The lower group are runs taken

on a different day. The data from this subject showed the widest separation

of any data taken; however, even when this large day-to-day variation

existed we still get the same shape of the curve for a series of scaled

motion runs. The two curves faired through the data points were taken
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from the previous figure (figure 4), the average of all subjects, and

normalized to this subject's individual data points at the 25 percent
motion scale.

Pitch

error 1.5-

1.0-

.5

0 / I I I I

No 10 20 30 40
motion

0 I These data taken on different days[]

0

0

curve taken from previous figure

[3

I I I I I I

50 50 70 80 90 Full

motion

Scale of motion, percent

Figure 5. - Day-to-day variation of one subject.

CONC LUS ION

Motion can be an important factor in many simulations. However these

data demonstrate that it is not necessary to always supply full-scale

motion cues. Th_s of course has wide implications on the design and

construction of simulators. As motion is scaled down so can the size,

the power, and the cost of the simulator. Further, it should be

emphasized that even though this study only covers motion in angular

degrees of freedom, the basic technique should be applicable to other

areas, in particular simulations using linear motion. The motion-scale

tests also suggest other approaches to the motion problem. It is

conceivable that artificial or pseudo motion cues could be used in place

of the true motion inputs.
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22. Subjective Scalingof Springs, Shock Absorbers,and FlyWheels

Richard Pew and J. David Chananie

University of Michigan

Abstract

Twenty-four subjects judged the relative stiffness of springs, resistance

of viscous dampers and massiveness of inertias produced by a variable dynamics

control stick. Perceived massiveness was found to be non-linearly related to

physical inertia. However, the presence of substantial damping tends to reduce

sensitivity to massiveness and vice versa.

INTRODUCTION

In the development of modern control systems, mechanical linkages

between the physical control device and the system that is being controlled

are being replaced with hydraulic and electrical actuators. One result is the

need to design artificial feel into a modern flight control system. Similarly,

the form of force feedback in the automobile power steering system must be

specified. These developments focus attention on the desirability of providing

useful kinesthetic feedback to the control system operator, but there remains

the question of prescribing just what that feedback should be. One obvious

technique is to examine the effect of various dynamic characteristics of the

control device on system performance. There are a number of studies that

evaluate the effect of the physical constants of a control on performance, for

example, Bahrick (1957), Bahrick, Bennett, and Fitts (1955), Bahrick, Fitts,

and Schneider (1955), and Howland and Noble (1953).

These studies suggest that spring restoring force is desirable in a control

device, but that viscous damping, that is, resistance to motion that is pro-

portional to speed, and inertia, resistance to motion that is proportional to

acceleration, are undesirable except in special cases in which the input

signal to be controlled is predominantly a constant velocity or a constant

acceleration. It has also been shown that the dynamics of the system to be

controlled have an important relation to the dynamics of the control device
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itself. Notterman and Page (1963) and Herzog (1968) have shown that physical

dynamics in the control device that are correlated with the dynamics of a

simulated plant to be controlled can significantly reduce error scores in a

man-machine tracking system.

The opinions of experienced pilots also have played an important role in

defining the desirable properties of aircraft artificial feel systems. As a

result of this influence, modern aircraft feel systems have been designed to

retain many of the characteristics that would be associated with the direct

mechanical linkage to the control surfaces:

Without denying the importance of performance data and expert experience,

there is another dimension to the problem that also seems relevant. Burrows

(1965) points out that we need to know how various dynamic feel characteristics

are perceived by the operator. In fact, Knowles and Sheridan (1966) examined

the ability of operators to detect differences between levels of friction and

of inertia in the operation of simple rotary controls. In its general form this

question becomes, "What is the relation between the physically defined constants

of a control and the operator's perception of these properties ?" For example,

how does viscous damping expressed in lb. -ft./tad./sec. relate to the opera-

tor's perception of the amount of resistance to movement it produces ? In the

case of simple linear dynamics one may also ask the equivalent question

concerning the relationship between spring constant and perceived stiffness,

and between moment of inertia and perceived massiveness. The experiments

to be described were directed toward a quantitative description of these

relationships.

The study of the relationship between perceived magnitude and the physical

intensity of a stimulus is a classical problem of psychophysical scaling.

Several techniques have been proposed and there has been considerable con-

troversy concerning the most appropriate scaling method. One scaling

procedure that has the virtue of simplicity and that has been used to character-

ize a wide variety of sensory dimensions is the method of magnitude estima-

tion (Stevens, 1957). With this technique, the observer is instructed to assign

numbers to a series of stimuli so that the numbers assigned are proportional

to the apparent or perceived magnitudes of the felt sensations. If one stimulus

is perceived to be twice as intense as another, it is to be assigned a number

twice as large as the first. This procedure has been applied to a variety of

sensory dimensions ranging from subjective brightness on the one hand to

perceived intensity of electric shock on the other. On all intensity dimensions

studied thus far, it has been found that a graph of the logarithm of perceived

magnitude versus the logarithm of physical intensity can be adequately des-

cribed by a straight line. The linear relationship between these two variables
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on logarithmic coordinates implies that equal stimulus ratios produce equal

sensation ratios, that is,

q_ = kS n

where ,I, represents the perceived magnitude, S represents the physical

intensity, n represents the slope of the linear relationship, and k is a scale

factor. This scaling technique was employed in the experiments to be
described below.

EXPERIMENT I

Method

Observers. Twenty-four male observers participated. Twenty-three

served as part of an undergraduate psychology course requirement, and one,

an engineer working in the laboratory in which this experiment was conducted,

served as a service to the experimenter. Both right- and left-handed observers
were used.

Apparatus. The observers manipulated a right-handed sidearm control

stick that was pivoted at the elbow and permitted rotation of the entire lower

arm in a horizontal plane. The observer applied forces to the control device

through a vertical hand grip mounted at the end of the control arm. Rotation

of the control arm produced rotation in a vertical shaft that was rigidly

connected to the armature of a torque motor mounted at the base of the shaft.
A potentiometer, tachometer, and accelerometer were mounted on the shaft

and provided voltage outputs proportional to angular position, velocity, and

acceleration, respectively. These signals were processed by an analog

computer and fed back to the torque motor in order to produce the desired

dynamic conditions. For example, spring restoring torque was produced by

exciting the torque motor with a voltage proportional to the angular position

of the control stick. The spring constant was manipulated by adjusting the

multiplying constant on an analog computer servomultiplier. Viscous friction

and moment of inertia were obtained by equivalent operations on the velocity

and acceleration signals. A detailed description of the control stick and its

associated circuitry is given in Herzog (1967). Aside from forces produced

artificially by the torque motor, the intrinsic spring constant and damping of

the control device were negligible. The intrinsic inertia of the control arm

and torque motor armature taken together were 0. 066 lb. -ft./rad./sec 2.
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Experimental design. Each observer made judgments on each of the

dimensions: spring constant, coefficient of viscous friction, and moment of

inertia. When springs were being judged, viscous friction and inertia were

set at zero. A similar procedure was used for the other dimensions. A setting

of zero inertia implied the intrinsic inertia of the control device and torque

motor given above. The observers were randomly assigned to three groups of

eight observers each. Each group was tested on the three dimensions in a
different order such that every dimension followed every other dimension

equally often.

The observers judged 10 levels of each dimension as shown in Table 1.

Each level was judged twice, making a total of 20 judgments per subject

for each dimension.

Table 1

Values of Dynamic Dimensions to be Judged

Spring Constant

(lb. -ft./rad. )

Coefficient of

Viscous Friction

(lb. -ft./rad./sec. )

Moment of Inertia

(lb. -ft./rad./sec. 2)

1 2 3 4 5 6 7 8 9 10

.5 1.0 1.5 2.0 3.0 4.0 5.0 6.0 7.5 9.0

• 05 .10 .15 .20 .30 .40 .50 .60 .75 .90

.073 .079 .086 .092 .105 .118 .131 .144 .164 .183

The order of presentation of levels within a dimension was determined

separately for each subject by drawing randomly without replacement from

the pool of 29 stimuli.

Procedure. Prior to the beginning of the experiment proper, the observers

were familiarized with the scaling procedure to be used by practicing at the

task of estimating the lengths of lines. The observer was presented a line of

a given length that was defined as the standard and assigned arbitrarily the

number 10. He was then instructed to, "Judge the length of the lines that

follow on a scale such that if the line is twice as long as the standard, assign

it the number 20. If it is half as long as the standard, assign it the number

5..." and so forth. After the observer had completed this preliminary

practice satisfactorily, the experimenter read a set of prepared instructions

to the observer concerning the judgment of the three dimensions: spring
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constant, coefficient of viscous friction, and moment of inertia. The subjective

dimensions he was instructed to judge were described to him as "spring stiff-

ness," "resistance to motion," and "massiveness," respectively. The obser-

vers were given as much time as they wished to respond. The intertrial

interval was I to 2 seconds_ and all observers completed the experiment in a

single 1-hour session.

Results

Geometric mean estimates were computed for each stimulus value. These

means were obtained by pooling the data for two judgments from each of the

24 observers. Figure la, b, and c show the results for spring constant,
coefficient of viscous friction, and moment of inertia, respectively. When

plotted in double logarithmic coordinates, the three functions seem adequately

described by a linear regression line. Given that these data seem to be

consistent with the power function description that has been found to be appro-

priate to the other sensory dimensions, the parameter of interest is the slope

of the regression line or, in power function terms, the exponent of the power

function. A slope equal to 1.0 implies a one-to-one correspondence between

the physical dimension and the perceived effect. Slopes less than 1.0 imply

a loss of sensitivity as the magnitude of the physical dimension increases,
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while slopes greater than 1.0 imply increasing sensitivity with increase in

physical magnitude. The slopes obtained from these data are: spring

constant - 1.05, coefficient of viscous friction - 0.88, and moment of inertia -

1.27. Thus springs and viscous friction appear to be judged relatively

accurately while the observer tended to be more sensitive to changes in moment

of inertia with increasing stimulus magnitude.

EXPERIMENT II

A second experiment was undertaken in an attempt to replicate two of the

conditions employed in Experiment I and to examine the interactions among

the perceptual effects of these elemental dynamic properties. Moment of

inertia was judged in the presence of three levels of viscous damping, and

coefficient of viscous friction was judged under three levels of inertia.

Method

Observers. Twenty-four male students who volunteered to serve as paid

observers were used. One additional observer was discarded for failure to

follow the instructions appropriately. Both right- and left-handed observers
served.

Procedure. Each observer served in six conditions. They judged moment

of inertia with the coefficient of viscous friction set at 0, 0.50, and 0.90 lb. -

ft./rad./sec. They also judged the perceived effect of viscous damping under

three levels of moment of inertia, namely, 0. 066, 0. 131, and 0. 183 lb. -ft. /

rad./sec 2. Half of the observers made inertia judgments first, and half made

damping judgments first. Each of these groups of 12 observers was further

subdivided into three groups of four observers each, and each subgroup judged

the primary dimensions under a different order of presentation of the secondary

dimensions. After completing the judgments on the first primary dimension,

the observers were redistributed into three new subgroups and judged the

second primary dimension in a different order of the secondary dimension

conditions. For both the first and second sets of judgments the order of pre-

sentation of the secondary dimension levels was defined by a 3 x 3 Latin square.

As in Experiment I, each observer made two judgments at each of 10 values

along the primary judgment dimension, as given in Table 1, in a random order.

In all other respects the conditions were equivalent to those of Experiment I.

Results

Figure 2a, b, and c present the geometric mean judgments of damping for
each of the three levels of the moment of inertia, and Figure 3 presents the
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geometric mean judgments of inertia for each level of viscous damping. The

10th-90th percentile range of judgments for each stimulus value is also shown.

In a!! cases the linear regression curves appear to be appropriate descriptions

of the data. For judgments of viscous dampi_n_g, the obtained slopes were

1.04, 0.89, and 0.77 corresponding to inertia levles of 0. 066, 0. 131, and
0. 183 lb. -ft./rad./sec 2. For judgments of moment of inertia, the obtained

slopes were 1.82, 0.53, and 0.60 for the levels of damping corresponding to

0.0, 0.50, and 0.90 lb. -ft./rad./sec.

Discus sion

It appears that at least to a first approximation the perception of the

elemental dynamic properties of control sticks may be described using the

Stevens scaling procedures examined here. Adequate power function relation-

ships were obtained in all cases with perhaps the exception of the judgment of

inertia under significant levels of damping. The variability observed in

these data is typical of that obtained with other sensory continua. In the two

cases [n which damping was studied with a minimum of contaminating inertia,

the obtained slopes of 0.89 and 1.04 are reasonably consistent. The slopes

for judgment of pure inertia, namely, 1.27 and 1.82, while both greater

than 1.0, are not as consistent as one would hope, since the stimulus con-

ditions were the same and large subject populations participated in both

experiments. The most likely source of difference between the two is the

amount of experience each group accumulated in making these judgments.

Experiment I observers made a total of 60 judgments, while Experiment II

participants made 120 judgments each. Of those sensory dimensions studied

previously, the ones most closely allied to the judgment of massiveness

studied here are judgments of the heaviness of lifted weights. The range of

exponents that has been obtained in lifted-weight experiments is from 1.13

to 2.07 (Stevens and Galanter, 1957). Thus, these inertia judgments appear

to fall in the same range.

Both the experimental data and the reports of observers who participated

in Experiment II suggest that the perceived effect of one dynamic dimension

becomes more difficult to judge when it is to be carried out in the presence of

substantial levels of another dimension. It is as if the presence of a signifi-

cant level of the secondary dimension masks the changes on the dimension to

be judged. If the presence of damping completely masked changes in per-

ceived inertia, power function exponents approaching zero would be predicted.

The decreasing exponents with increasing levels of the secondary dimension

is suggestive of just such an effect. Further, the decrease in stability of

the geometric mean judgments of inertia under substantial levels of damping

is consistent with the observers' reports of greater difficulty in making these

judgments.
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In addition to the demonstration of a methodology for evaluating the per-

ceived effect of dynamic dimensions of a control stick, the most important

practical result appears to be the demonstration that the perceived massive-

ness of a control device grows more rapidly than its corresponding physical

magnitude. This result provides a further reason for minimizing control

stick inertia and also suggests that when the inertia is relatively large, small

changes in the level of inertia are more likely to be noticed by the operator.

This increasing sensitivity does not appear to be present with spring stiffness

and viscous damping.
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23. HumanPerformance in Time-OptimalState Regulation Tasks

Duncan C. Miller

Bolt Beranek and NewmanInc.

ABSTRACT

Three subjects were thoroughly trained in the time-optimal

state regulation of two second-order systems with several types

of displays. The subjects were required to bring the state of
the controlled system from a serZes of arbitrary initial condi-

tions to rest at a zero reference state in minimum time by manip-

ulating a control switch. The statistical distributions of the
subjects' switching errors were modeled in terms of the sensory

Judgments and decisions required by the task.

1.0 INTRODUCTION

This paper summarizes the results of a set of experiments
carried out as part of a doctoral thesis investigation in the

Mechanical Engineering Department at MIT. The discussion of sev-
eral points will be necessarily sketchy, and liberal references
will be made to the thesis report 1.

The purpose of this investigation was to study the ability of
the human controller to plan and execute discrete responses to a

displayed set of system state variables.

The task investigated was that of the time-optimal state regu-
lation of a second-order system. Two controlled systems were em-

ployed: a pure inertia system (the double integrator) and an un-

damped oscillator system. In both cases, the human operator was
required to bring the system from an arbitrary initial state to
rest at the zero-reference state in minimum time, by manipulating

an input control switch.

This task was chosen for several reasons. First, a well-

defined optimal strategy exists, with which human performance can

be compared. This strategy consists of holding the control input
at its full positive or negative limit at all times, switching

between these limits at certain specified times. Strategies of
this kind are called "bang-bang" strategies, and can be (and were)

implemehted with a discrete input control. The system state at the
instant each switch is made can then be compared with the state at

which the optimal response should have occurred, and a statistical

description of the switching response errors can be determined.
Second, in executing his responses, the human controller must per-
form a series of sensory Judgments, calculations, and decisions.

The task, in other words, consists of a series of subtasks, and
any errors which occur in the performance of these subtasks will
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affect the performance of the whole task. By using different types
of displays, it is possible to eliminate certain subtasks, and so
to deduce his ability to perform the others. Third, this task it-
self is an interesting one, and a model developed for it could be
applied to a number of practical problems.

One such application is found in the Apollo navigational sys-
tem. An astronaut is required to take a series of sextant sightings
in which he must superimpose the images of a certain star and a
lunar or terrestrial landmark, and to press a "MARK" button when
superposition has been achieved. Duke and Jones 2 have investigated
this task in detail. In Chapter 5 of the thesis report, their re-
sults are compared with the predictions of the discrete response
model developed in this investigation.

There are many other applications which arise in space flight,
since the firing of main propulsion and attitude control rockets
is inherently a bang-bang process One such application, discussed
by Athans and Falb _ (pp. 595-610)_ is the control of a spinning,
tumbling spacecraft. Others include the use of state variable dis-
plays (particularly predictor displays) to achieve orbital intercept
and rendezvous, as proposed by McCoy and Frost4,5, 6.

A bang-bang mode of control has been observed even in conven-
tional, continuous tracking tasks. It has been noted that the human
controller sometimes departs from his continuous tracking strategy
to make bang-bang reductions in the system error if it has become
too great because of some transient in the controlled system. This
feature has been incorporated into models of human tracking per-
formance by Weir and PhatakY and Costello 8.

The vast majority of studies directed at modeling and under-
standing the human controller have been concerned with quasilinear
models of continuous, compensatory tracking behavior. The results
have been quite satisfactory, and many of the models have become
quite sophisticated. See, for example, McRuer et al9. Occasional
studies of the feasibility of bang-bang or "off-on" controls in
continuous tracking have been made, such as that by Ziegler and
Chernikoff l0 .

The concept of using higher-order system state variables to
improve tracking performance has appeared in several ways. One
technique is the production of a weighted sum of the state variables
to produce a "quickened" display. This method ha_3been studied by
Rund et al II, Goldstein 12, and Runner and Sweeney , among others.
Another is the use of the state variables to produce a fast-tlme
predictor display. See Kelley 14, for example.

Yet another technique is to display several state variables
separately but simultaneously. This technique has been studied
and compared to the quickening technique by Obermayer, Webster
and Mucklerl5. Of course, when several state variables are displayed
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_.1.._-_,,_an_n1_glv_and the human controller must make use of them all,
he must develop a visual scanning pattern and tlme-share h_s atten-
tion between the various displays. Because this is essentially
what occurs with aircraft instruments, a great deal of work has "6
been addressed to this problem. See, for example, Senders et al I ,
Levlson and Elklndl7, and Eikind et al ]8.

The latter study is of particular significance since it is
concerned also with the optimality of the human controller's con-
trol and scanning strategies as indicated by applications of modern
control theory. This represents one example of a new direction in
manual control theory: the modeling of the human controller as an
optimal (or suboptimal) controller. A general discussion of this
concept may be found in Obermayer and Mucklerl9. One of the problems
treated therein is the very task under consideration in this report:
time-optimal state regulation of second-order systems by means of
phase plane displays. In a phase plane display, the horizontal and
vertical coordinates of a displayed point reveal not only the system
error, but also the first derivative of the error. The authors
reference no experimental studies of the subject other than some
early demonstrations by Platzer20,21 that a phase plane display can
significantly reduce the compensatory tracking errors of inexperienced
operators.

Where the task of time-optlmal state regulation has been studied
experimentally, it has been with an ulterior motive. Preyss 22 used
it in developing a model of human learning. He modeled the develop-
ment of switching strategies by a naive subject as a probabilistlc
process, in which the subject observes the result of a given response
and uses this result to update his set of estimated probabilities
concerning the correct strategy. Pew23 used this task as a means
of studying human ability to generate a sequence of precisely-timed
responses. Pew used a single variable display and a pair of keys.
When the left key was depressed, the displayed state indicator was
accelerated to the left at a constant rate, and when the right key
was depressed, it was accelerated to the right at the same rate.
There was no "off" or zero acceleration choice available. The task
was to bring the state indicator to rest at the origin and keep it
there. Because there was no way to turn the control input off, this
necessitated a rapid chatter mode of response to keep the state near
the origin. Because Pew used rather high acceleration rates (1.79
to 185 cm/sec2), the subjects had to make very rapid responses. Pew
found that the techniques of phase plane analysis allowed him to
deduce apparent switching lines in the phase plane, and concluded
that this approach produced a good characterization of the subjects'
performance.

In a subsequent study 24, Pew extended the scope of his investi-
gation. He compared subject performance with the single variable
display, a two variable display in which the position and velocity
were displayed separately, and a phase plane display in which they
were displayed together. For this study, he provided a zero accel-
eration control choice as well as constant accelerations to the
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right and left. He found that the subjects generally performed
better with one of the velocity-alded displays than with the un-

aided displays, especially with high acceleration constants
(30 cm/sec2). He found that the subjects brought the state indi-

cator to the origin in a nearly optimal way, and then kept it

there by applying short pulses of acceleration as needed. Pew
found this pulsing behavior very interesting, and studied it in
detail. One of his techniques involved blanking the display for

varying times after each pulse in order to deduce the way in which
the subjects were utilizing the feedback information from the dis-

play.

None of these studies was primarily concerned with analyzing

the sources of error and the causes of suboptimal performance.
This seems never to have been attempted. Therefore, the develop-

ment of a performance model must depend on the proper identifica-
tion of the task components and the separate analysis of each.

Some of these components are the estimation of time, velocity,

and distance; the prediction of the point of intercept of a moving

target with a line, etc. The amount of literature available on the
individual analysis of these component tasks is enormous. No at-

tempt will be made to list such references here. Instead, the most
applicable citations will be quoted later in this report whenever
it is necessary to verify or compare some experimental result with

accepted psychophysical data.

2.0 EXPERIMENTAL PLAN

Three graduate students in the department of mechanical engi-

neering were recruited as subjects. A PDP-8 computer was programmed
to generate a variety of displays. Two second-order systems were
chosen for investigation: a double integrator (whose transfer

function has two purely imaginary poles). The experimental task
and the optimum strategy for carrying it out were carefully explained

to the subjects. They were trained first with those displays which
provided the greatest amount of pre-processed information (the switch

curve and predictor displays), and then with those displays which
provided few strategy aids and left the information processing to
the subjects (the unaided phase plane and single variable displays).

When the subjects had reached a high level of proficiency with each
display, their switching errors were recorded and analyzed. The

following sections describe this process in detail.

2.1 The Experimental Task

The task investigated is that of time-optimal state regulation

of second-order systems, where the magnitude of the control input
is limited to some finite value.
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The state of a second-order system may be completely described
at any instant of time by specifying the magnitude of two properly
chosen "state variables." Let these state variables be called x
and y. If the system is subject to a control input, u, then the
system state equations can be written in the form

-- fl(x,y,u)

= f2(x,y,u)

luI_<c

where C is the limit of the control magnitude.

The time-optimal state regulation task consists of finding
that control function u(t) which will bring x and y to zero in the

shortest time. If the system equations are linear, tlme-invariant,
and mathematically well-behaved (see Athans and Falb3, Chapter 6,

for a complete discussion of what constitutes "good behavior"),
then a unique control function which accomplishes this can be
found. This control function will depend on the initial condition,
of course, but in a regular manner such that a general control

strategy can be formulated which will produce the proper control
function for any given initial condition.

For well-behaved systems, this control strategy requires that
u = +C at all times until x and y reach 0, and that u=0 thereafter.

In other words, the control input must be switched at precisely
timed intervals between its positive limit and its negative limit.

This technique has come to be called "bang-bang" control. The
formulation of the control strategy consists of finding those com-

binations of x and y for which u must equal +C and those for which
it must equal -C. These combinations will appear as well-defined

regions of the x,y state space. The boundaries between these
regions represent the points at which a control switch must occur,

and are called "switch lines." These switch lines represent
uniquely the time-optimal control strategy, and the human operator's

task becomes that of planning and executing control switches so that
they occur exactly on the switch lines.

2.2 The Systems and Displays Used

The first system used, and the only one which will be discussed

in detail in this report, was a double integrator, which obeys the
differential equation

= u lul < .125
N
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where x is measured in cm on the display screen and u is measured

in cm/sec 2. This low acceleration limit was chosen to ensure rela-

tively small displayed velocities. With large velocities, the

subjects' timing errors in reacting to the rapidly moving display
tend to dominate all other sources of error, making the identifi-

cation of these sources difficult.

Let us choose as state variables x and y = 4x, which may be

used to generate an x vs. y phase plane display. The gain of 4

on the velocity axis was chosen in order to permit the location of

initial states over a large area of the display screen without pro-

ducing state trajectories which leave the screen. In later sections,
the effects of lower displayed velocity gains are investigated.

Using these state variables, we may write the system state equations

as

x = •25y

= 4u lul < .125

where x and y are the displayed state variables, measured in cm on

the display screen.

1
It is shown in the thesis report that the time-optimal state

regulation strategy for this system is a bang-bang strategy, in

which the system state is constrained to move along phase plane

trajectories of the form

X = X
O

= X
O

+ .25 y2 when u = +.125

- .25 y2 when u = -.125

The possible phase plane trajectories consist of two families

of parabolas, which open to the right when u is positive and to the

left when u is negative• These trajectories are shown in Fig. 1.

The state of the system must move along one of these trajec-

tories in a clockwise direction with increasing time. Because we

have found that the control input can switch once at most, we con-

clude that the state can switch from a left-opening parabola to a

right-opening parabola (or vice versa) once at most. Since the

state is being forced to the origin, it is clear that the final

segment of the trajectory must be along one of the two parabolas

which pass through the origin. Specifically, any state on the

upper half of the left-opening parabola through the origin, i.e.,
all states for which

2
x = -.125 y y > 0
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can be forced to the origin by the control u = -.125. Similarly,
all states on the lower half of the right-openlng parabola

2
x -- +.25 y y < 0

can be forced to the origin by the control u : +.125.

of these two half-parabolas,

The union

x : -.25y lyI

is called the switch curve.

The switch curve is shown as a dashed line in Fig. 2. By

tracing out the various bang-bang strategies on this figure, the

reader may convince himself that the optimal strategy from a region
above the switch curve is to switch left until the state reaches

the switch curve, and then switch right until the state reaches

the origin, at which point the switch is turned off. Similarly,
from a point below the switch curve, one must switch right, then
left, when the state reaches the switch curve.

This, then, is the strategy which the human controller at-
tempted to execute during the experiments. We now turn to the

various displays which were used in these experiments.

The most informative display which can be given to the human
controller is a phase plane display on which the switch curve is

superimposed. The human controller's function is simply that of
a relay, throwing his control switch to the left or right whenever
the state indicator intersects the switch curve. This type of

display will be called the "switch curve" display.

The second type of display used is the "predictor" display.

In this display, the switch curve does not appear. Instead, the
human controller sees two predicted trajectories extended 8 sec
into the future. This prediction period was sufficient to allow

the predicted trajectory to reach the origin from any point of
intersection with the switch curve which could occur. This display

contains the same information as the switch curve display, but
instead of watching the state indicator approach the switch curve,
the human controller watches the predicted trajectory approach the
origin.

The switch curve and predictor displays will be called the
"aided" displays. Photographs of these displays as they actually

appeared on the display screen are shown in Fig. 3.
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Switch curve display 

Predictor display 

Fig. 3. Photographs of the aided displays for the double integrator 
system as they appeared to the subjects. 
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The other three displays used will be called, collectively,
the "unaided" displays. These include: a "phase plane" display

identical to the switch curve display except for the absence of
the switch curve; a "low-galn phase plane" display in which the
gain on the displayed -'^_v_....v_e y is greatly reduced (to 1/20 of

its previous value); and finally, a "single variable" display in
which the gain on y is reduced to zero and the displayed state

moves only along the x-axis. Photographs of these displays are
shown in Fig. 4.

2.3 The Equipment Used

A Digital Equipment Corporation PDP-8 computer was used to

simulate the controlled system, to produce the various displays,
and to record the human controller's switching responses.

The human controller was seated in a small room away from

distracting sights and sounds. An oscilloscope with a 12 cm diam-
eter screen was located at eye level, 50 cm from his eyes. At his

right hand was a toggle switch, oriented vertically, which could
be thrown to the left, to the right, or returned to the center.
This switch was connected to an A/D channel of the computer. The

oscilloscope was connected to the D/A channels of the computer's
Model 34D display generator. Any of the displays shown in Figs. 6

and 7 could be produced. In all cases, the axes of these displays
measured l0 cm on the screen.

The computer was programmed to contain the controlled system
equations, which were set up as difference equations In canonical
form. A clock interrupt routine ensured that the system ran at

the proper rate in real time. When a clock interrupt occurred,
the program would sample the position of the controller's switch,
calculate the new state of the system, update the oscilloscope

display, and then wait for the next clock interrupt. This cycle

occurred 32 times per second for all displays except the predictor
display. Because of the lengthy calculations involved in producing

the predicted trajectories, this display appeared to flicker
slightly on the screen, but the subjects did not find this annoying.

The program contained a list of i00 initial conditions distrib-

uted throughout the displayed area of the phase plane. At the be-
ginning of the trial, the control switch was in the center, or "off"

position, and the display showed the initial state of the system.
As soon as the subject threw the switch to the right or left, the

state indicator began to move. Thereafter, wherever the program
sampled the switch position and found that it had changed since

the last sample, the present state of the system was typed out and
punched on papertape. If the sample revealed that the switch had

been returned to zero, the program paused for about I0 milliseconds
and sampled again. If the switch was still at zero, the program
concluded that the trial was over and set up the next initial con-
dition.
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Fig. 4. Photographs of the unaided displays as they appeared to the subjects. 
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At the end of 100 trials, the program had produced a paper-

tape on which were punched the phase plane locations of every
swltchpoint. This tape could later be read by the various analysis

programs.

2.4 ^-^_"_= m_ehn_ques

Several programs were written to analyze the switching data.
Some were designed to calculate the mean and variance of the switch-

ing error distributions along various segments of the switch curves.
Others were designed to test various hypotheses by normalizing the

switching errors according to some assumed relationship and check-
ing the normalized error distributions against a predicted distri-
bution.

The first step in all of these programs was the calculation

of the switching error for each switchpoint. This error was always

measured as the distance along the state trajectory from the switch
curve to the switchpoint. To accomplish this calculation, the an-

alysis programs used the system state equations. The program would
first read a switchpoint from the tape. It would then integrate the

system equations backwards in time from the origin to the x-position
of the switchpoint. This generated the switch curve. Then it would
check to see whether the swltchpoint lay above or below the switch

curve, and would begin integrating the system equations from the
switchpoint toward the curve. When the trajectory thus generated

intersected the switch curve, it would record the length of the
trajectory, and perform the appropriate calculations.

During this process, round-off and quantization errors accumu-

late. To check the magnitude of these errors, the points displayed
as the switch curve were fed into the analysis program as switch-
points. The program calculated that these points had a mean error

of .002 cm, and a standard deviation of .003 cm. As will be seen

in later sections, the experimentally obtained standard deviations
were never smaller than .020 cm. Computing the error produced in

the calculated standard deviation by taking the square root of the
sum of the squares of these two quantities, we see that an error
of less than 1 percent of the true value results.

2.5 Experimental Methods

Three subjects were selected, all of whom were graduate students
in the Department of Mechanical Engineering at M.I.T. These subjects

were thoroughly trained in the control of each system-dlsplay com-
bination before final data were recorded.

First, the time-optimal switching strategy was explained to them.
They were instructed to minimize the mean and variance of the dis-
tribution of switching errors with respect to the switch curve.
After each experimental session of i00 trials, which lasted approxi-

mately 45 mins, these statistics were calculated and plotted on a
wall chart. Competition between subjects to achieve the smallest

error distributions was actively encouraged.
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The first display used in each case was the switch curve dis-
play. When it appeared from the wall chart that a subject had
achieved a high (and stable) level of proficiency, three data ses-
sions of i00 trials each were run. Then the subject began training
with the predictor display. This process was repeated with the
phase plane display, the low-galn phase plane display, and the
single variable display, in that order. Thus, by the time the
subject was tested on the unaided displays, he was thoroughly
familiar with the required switching strategy. In the course of
the experimental program, each subject performed at least 2000
trials with each of the two controlled systems.

3.0 EXPERIMENTSWITH THE DOUBLEINTEGRATORSYSTEM

Switching error data were acquired for each display in the
manner described in Chapter 2. These data were then studied in
detail according to the following procedure: First, the calcula-
tions and decisions which the human controller needed to make when
using a given display were considered. A model for the process
was proposed which was consistent with his known abilities and
with the particular system and display characteristics. Second,
the switching error data was compared with the model, and values
were calculated for the various model parameters. Finally, these
values were compared with those previously reported in the litera-
ture. The results were checked for consistency with the results
from previously analyzed displays.

Before turning to the analysis of the double integrator data,
however, let us consider some fundamental causes of suboptimal
behavior, and then study the results of a preliminary experiment
designed to explore some of the human controller's psychophysical
characteristics.

3.1 Causes of Departures from Optimal Behavior

In carrying out the time-optlmal state regulation task, the
human controller must first calculate the proper point at which

to switch, and must then perform the switch when this point is
reached. The first step will be called the "planning" stage and

the second step, the "execution" stage.

Potential sources of error occur in both stages. The first

step in modeling the controller's performance is to identify and

separate the errors of planning and the errors of execution. The
varying amounts of information contained in the various displays

provide a method of accomplishing this.

The aided displays (i.e., the switch curve and predictor

displays) provide the controller with unequivocal information
about where the switch should occur. With these displays, he is

relieved of the necessity of planning (in the sense we use the

word here). The switching errors which occur with the aided
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displays, then, we can attribute to _w_ o__execution. In the•
unaided displays, on the other hand, the controller must remember
the switching strategy for himself. He must first plan, then exe-
cute the switch; his switching errors will be a combination of his
errors in planning and execution.

We shall now consider in detail the nature of the errors of
execution.

3.2 A Model for Errors of Execution

When the display contains explicit information about both the

optimal switching strategy and the state of the system, then the

human controller's task reduces to one of picking the right instant

to switch. He cannot wait until the display indicates, "The time
is NOW!", for then his inherent reaction time will cause him to

switch consistently late. Rather, he must continually ask himself,
"Is the time required for the system state to reach the switch

curve equal to (or less than) my reaction time?". As soon as the
answer to this question is "yes", then he will initiate his switch-
ing action.

Several sources of error will affect this process. There will
be limits to the controller's visual acuity which will prevent him

from perceiving perfectly the location of the system state indica-

tor and the switch curve; or, in the case of the predictor display,
of the predicted trajectory and the origin of the phase plane.

With the switch curve display, there will be inaccuracies in his
predictions of the point of intersection of the state indicator
with the switch curve, in his estimate of the distance from the

present state to the point of intersection, and in his estimate of
the velocity with which the state indicator is moving. With the
predictor display, there will be similar inaccuracies in his esti-

mates of the distance from the predicted trajectory to the origin,
and of the velocity with which the trajectory is approaching it.
In both cases, his actual reaction time will differ somewhat from

his prediction, since his reaction time is not constant, but varies
slightly from trial to trial.

Let us attempt to formulate a model of this process, and to

decide how these sources of error might combine to produce a dis-
tribution of switching errors with the switch curve and predictor
displays. Let us assume that the controller estimates d (the dis-

tance along the trajectory from the present state to the point of

intersection with the switch curve), v (the velocity of the state
indicator along its trajectory), and T (his reaction time). Let
us further assume that the differences between his estimates of d

and the true value, D, are normally distributed with zero mean and

variance e_; that the differences between his estimates of v and

the true value V, are normally distributed with zero mean and vari-
ance e_; and that the differences between his estimates of his

V
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reaction time and his actual reaction time on any particular trial,
T, are normally distributed with zero mean and variance oT. Finally,
we assume that his errors of visual acuity are normally distributed
with zero mean and variance o_.

We will assume that these sources of error are mutually inde-
pendent, in the sense that the human controller's errors in estima-
ting velocity do not affect his estimates of distance, and so forth.
It is not completely clear that this assumption is Justified, but
we will presume that if such interactions do occur, they will be
small. In any event, it is obvious that these errors will interact
with each other in producing the net switching errors.

In order to determine what these interactions will be, let us
presume that the human controller's calculations are mathematically
equivalent to estimating the probable switching error,

e = Tv- d ,

and initiating his response when the probable error is zero. again
assuming that all sources of error are independent, and that od
represents that variance in estimating distance which is not attrib-
utable simply to limited visual acuity, we propose that the vari-
ance of the distribution of switching errors will be the sum of
three components:

2= 02 + 02+ 020e Tv

where 02 represents the variance of the product of x and v. If
Tv

the controller's estimates of _ and v are independent and normally

distributed about the true values of T and V, respectively, then

0 2 can be expanded as
TV

02 = _2v2 _ T 2 V2
TV

Since the mean-squared values of T and v can be written

2 2 + T2 and v2 = 02 + V 2
= OT V

then

02 = 0202 + T202 + V2o 2
TV _ V V T
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Therefore, the variance of the error distribution is

2 a2a2 + T2av2 + V2a2 + 2 + a2(_e -- T V a

It is evident from our assumptions that the error distribution will
have zero mean.

Now we must make some assumptions about the nature of these
component variances. We can assume that g 2 and a2 are constants

T a

for any particular person. What about errors in perceiving dis-
tance and velocity? It is a well-establlshed fact that errors in

the perception of sensory stimuli increase as the magnitude of the
stimulus increases. One method of treating this phenomenon is to
calculate what is called a difference threshold, a differential

llmen, or a Just-notlceable difference (Jnd). This quantity can

be calculated in several different ways. In general, the Jnd is
defined as the smallest change in the magnitude of a certain
stimulus such that the new stimulus is perceived to be different

from the old stimulus. For a large range of magnitudes of many

stimuli, it has been discovered that the jnd is proportional to

the stimulus magnitude. The statement that

AW
= const

W

where AW represents the Jnd and W the stimulus magnitude, has come
to be called Weber's law. The magnitude of the constant serves as
a measure of the sensitivity of the particular sensory mode being
studied.

One way of modeling errors in perception of distance and

velocity is to use Weber's Law to predict that the standard devia-
tion of the error distribution increases in proportion to the dis-

tance of velocity:

ad = KdD av = KvV

and to use the appropriate Weber constants as the values of K_ and
K . However, we must be very careful not to extend Weber's L_w

b_yond its limits.

We must remember that Weber's Law was derived to account for

the ability to perceive differences between nearly identical stim-
uli. It does not state that these Jnd's are perceptually constant,
so that a stlmul---_s which is 20 jnd's above threshold appears to be

twice as great as a stimulus which is l0 jnd's above threshold, and
indeed this has not been found to be generally true. See Stevens 25

for a discussion of this subject.
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We must be very cautious, then, about using Weber's Law to
predict the accuracy of absolute Judgments. For such an applica-
tion, we wil_ instead turn to another model, proposed by Fullerton
and Cattel126, which is sometimes called Cattell's Law. This law
proposes that an absolute judgment of the magnitude of a stimulus
whose true magnitude is M units is equivalent to M independent
Judgments of the unit magnitude. If this unit magnitude can be
estimated with an error variance o_, then the variance of the sum

2
of M such Judgments will be M oI. Thus, Cattell's Law predicts
that

2 2
od = KdD and ov = KvV

A relationship of this kind was used quite successfully by
Ferrel127 in accounting for the variance of errors irl making open-
loop moves of varying distances in a remote manipulation task.
Ferrell found that the error variance was proportional to the dis-
tance to be moved over a range of distances from 0.5 to 8.0 inches.
He did not investigate moves shorter or longer than these.

Using the relationships predicted by Cattell's Law, and re-
calling that D = TV; we obtain

2 2 2 + K T2 + KdT) V + o2V2Ce = Ca + (KvC% v

An experiment was conducted in order to test the form of this
relationship and to discover values for these parameters. In this
experiment, a straight switchllne was displayed on the oscilloscope
screen. A spot moved along a straight trajectory at constant vel-
ocity toward the switch line, and the subjects were instructed to
throw the switch at the instant that the spot intersected the line.
As soon as they threw the switch, the spot stopped, in order that
they might see how close they had come to switching at the switch
line. Then the display was reset, and another trial was conducted.
Twenty trials were run at each condition represented in Fig. 5.
Note that the velocities used ranged from 0.147 cm/sec to ii.i0
cm/sec, and that the angles of intersection ranged from 26.6 ° to
90° . In most of the conditions used, the switch llne was horizontal,
and the spot approached from above and to the left. In order to
verify that the results were not dependent on the orientation of
the line, two conditions were used in which the switch line was
vertical. Two conditions were also used in which the switch line
was horizontal, but the spot approached from the upper right. An
inspection of the figure shows that these changes did not affect
the results. In fact, the figure reveals no consistent effect of
the angle of intersection at all. 'Figure 5 shows only the data for
one subject, but the other two subjects produced very similar results.
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Figure 6 shows the data from all three subjects, where now no
differentiation is made between the various angles of intersection.
Again, the standard deviation of the error distribution is measured
in cm along the spot's trajectory. A least squares regression
analysis was performed, and the best linear fit to the data was
found to be as shown in the following table.

SUBJECT: DJB HSC PAH COMBINED

INTERCEPT: .021 .017 .021 .020

SLOPE: .032 .032 .035 .033

The equation

a = .020 + .033V

gives a good fit for all three subjects, and is shown along with
the data in Fig. 6.

This relationship indicates an error variance of the form

2 V 2
a e = .0004 + .0013V + .0011

Comparing this equation to that predicted by the model,

2 2 _ KvT2ae = aa + (Kva + + KdT) V + a_V 2 ,

we can see immediately that

a = .02 cm and a = .033 sec.
a T

At the viewing distance of 50 cm, aa represents an angular

error of 1.37 arc minutes. This figure agrees quite closely with

accepted values for visual acuity. The ability to discriminate

between objects separated by one arc minute i_ often used as a
standard of normal visual acuity. See Foge128, page 519.

If we assume the controller's mean reaction time to be

200 msec, then a t represents 16.5 percent of the mean. Chocholle 29,

in a very carefully controlled study, found that the standard de-
viation of the human reaction time is almost exactly l0 percent of

the mean, over a range of reaction times from 100 to 300 msec.
However, a represents not the actual standard deviation of the

human controller's reaction time, but rather the standard deviation
of the difference between his actual and his estimated reaction
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times. If we assume that the distribution of his estimates is

independent of the actual distribution of his reaction times, but
has the same mean value, then we find that a2 is the sum of the

T
variance of his estimate and the variance of his actual reaction

time. If the standard deviation of his reaction time is 20 msec,
we can calculate that the standard deviation of his estimate is

26 msec, which is only slightly larger. This result seems suffi-
ciently reasonable to allow us to conclude that a e of 33 msec is
consistent with Chocholle's results. T

Inserting the values for ga and gT into the middle term of

the above equation, and again assuming that T = 200 msec, we obtain

.041 Kv + .2 Kd = .0013.

We have no data by which to solve for Kv and Kd individually,

but we can alternately assume that first one, and then the other,
is very small and thus obtain an upper bound for the value of the

other. Doing this, we find that

Kv < .03 cm/sec and Kd < .006 cm.

A typical velocity which occurs with the systems to be studied
is 1 cm/sec. At this velocity, a reaction time of 200 msec requires

that the switching decision be made at a distance of .2 cm from the
switchline. Using these typical values, we find that

gv < .17 cm/sec for V = i cm/sec

gd < .04 cm for D = .2 cm

Thus, we obtain standard deviations which are less than 17

percent of the true value of velocity and less than 20 percent of
the true value of distance, which we can compare with published

data for the human perception of speed and distance.

The most applicable data have been reported by Mandriota

et a130, who conducted a study of the human's ability to discrim-
inate velocity. They used an oscilloscope display on which a dot

would appear and travel across the screen at constant velocity for
a certain time and distance. Then another dot would appear and
would move across the screen at a different velocity. The subjects

were required to Judge which dot had the hi_her velocity. In one
set of trials, the two dots moved equal distances across the screen,
so that the subject's task was, essentially, to Judge which dot had

taken longer to traverse the fixed distance. In another set, the
two dots were displayed for equal times, so that the subject's task

was to Judge which had moved the greater distance. In the final set,
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the dots moved for different lengths of time and different distances

(which varied randomly) so that the subject had to Judge the velocity

directly.

For velocities which correspond to i cm/sec in the present study,
Mandriota et al found Weber ratios of 15-18 percent for the direct

judgment of velocity and 5-8 percent for the Judgment of relative
distance traveled. These results are quite consistent with the

values calculated above. In fact, if we assume values of 16 percent

and 7 percent, and calculate the equivalent Kv and Kd, we obtain

Kv = .026 and Kd = .001

which fit the equation

.041 Kv + .2 Kd = .0013

almost exactly!

We conclude that the model for the process of switching as a

point intersects a line is a good one, with excellent agreement
between the experimentally derived parameters and those reported

by previous researchers. The success of the model implies that
the assumptions of independence for the various sources of error
were Justified. This model should prove to be very powerful in

accounting for errors of execution.

3.3 Experiments with the Switch Curve Display

We assume that the only errors which occur with the switch

curve display are errors of execution. We shall now predict what
the distribution of errors will be at each point along the switch

curve, using the relation

= .020 + .033 V

First, we must derive the apparent velocity with which the
state indicator is moving through the phase plane as it intersects
the switch curve at a given point. The canonical equations of the

double integrator system used are

= .25 y

Y = +.5
m

where x and y are the horizontal and vertical variables displayed,

and are measured in cm.
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The apparent magnitude of the phase plane velocity Is

V= 2+y2

Therefore,

V = %/.25 + .0625y 2

for this system. For points along the switch curve, we can substi-
tute into thls equation

2
x = .25y ,

the equation of the switch curve, to obtain

v = .svl + Ixl

which gives the velocity of the state indicator at the instant of
intersection with the switch curve, as a function of the x-posltlon

along the switch curve.

We can now predict that the standard deviation of the error
distribution wlll be

a = .020 + .0165 v_l + ix'l

for any given x-posltlon on the switch curve.

Data were obtained from each of three subjects for approxi-

mately 300 trials from various initial conditions in the phase
plane. Figure 7 shows a representation of the actual data obtained
from each subject. It shows nearly 300 swltchpoints clustered very

tightly about the optimal switch curve In each case.

The switch curve was divided into segments whose length when

projected onto the horizontal axis was .5 cm. The mean and the
standard deviation of the distribution of swltchpoints lying along

each segment were obtained by the techniques described in Section
2.4. The results are plotted in Fig. 8, along with the expected
relationship predicted by the model.

The data for subjects HSC and PAH lie quite close to the pre-
dicted line, while those for subject DJB lie somewhat below It.

Thls result Is quite encouraging. It indicates that the results
from the experiment wlth straight switchllnes and straight, con-

stant velocity trajectories are applicable to systems wlth curved
swltchllnes and curved trajectories along which the state indicator

moves wlth nonconstant velocity.
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The data were also tested to see if their distribution was

normal. Each switching error was divided by the predicted e for
that point on the switch curve. If the distribution of errors at

each point along the switch curve is normal, and has a standard

deviation as predicted by the model, then the distribution of the
set of normalized errors shou_ also be normal, with zero mean and
a standard deviation of 1.

The results of this process are shown in Fig. 9, plotted on a

probability scale on which a normal distribution will appear as a
straight line. It is apparent that the error distributions are

indeed normal with nearly zero mean. The distributions for sub-

jects HSC and PAH lie very close to the line corresponding to a
standard deviation of i, while the distribution for subject DJB
indicates a somewhat lower standard deviation. This corresponds
to the lower e's which were apparent in Fig. 8.

In this figure, the position of points corresponding to errors

greater than 3e should not be considered too important. These
points represent only about 0.i percent of the data. In this case,
they represent only about 3 points each.

3.4 Experiments with the Predictor Display

When using a predictor display, the human controller does not

see the switch curve, but rather sees a predicted trajectory ap-
proaching the origin. He must predict how long it will take for

the trajectory to reach the origin, and when this predicted time
is equal to his predicted reaction time, he will begin his switch-

ing response.

Let us assume that the trajectory moving toward the origin
can be treated in the same manner as a point moving toward the
switch curve. We can calculate the velocity with which the x-axls

intercept of the trajectory is moving as it intersects the origin,
as a function of the point at which the state indicator intersects
the switch curve. We can then predict the distribution of x-inter-

cept errors, and can convert this distribution to the actual dis-

tribution of errors along the state indicator trajectory.

Integrating the system equations and performing some algebraic
manipulations, we find that the velocity with which the x-intercept
of the predicted trajectory passes through the origin is

V -- .5Y

where y is the vertical coordinate of the point at which the state
indicator intersects the switch curve. This indicates that the
standard deviation of the distribution of errors in x-intercept is

exl = .020 + .01651yi
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The ratio of errors along the state indicator trajectory to

errors in x-intercept is equal to the ratio of the velocity along
the trajectory to the velocity of the x-lntercept:

etra_ = _ 25 + 4
exi " "17["

From these relations, and from the equation of the switch

curve, we can calculate that the expected distribution of switch-
ing errors along the trajectory is

_ = _.25 + _ (.020 + .033v_ )

where, again, x is the horizontal coordinate of the point of in-
tersection on the switch curve, measured in cm.

Data were obtained from the three subjects for approximately
300 trials from various initial conditions in the phase plane.

Again, the switchpoints were clustered very tightly about the
optimal switch curve.

Figure i0 shows the calculated values for the mean error and
the standard deviation of the switching error distributions as a

function of x, obtained in the same manner as for the switch curve

data. The figure also shows the predicted relationship of c vs. x

as given by the model.

The data from the three subjects lie fairly close to the pre-

dicted line. Again, the simple a = .020 + .033V relationship has
successfully predicted the magnitude of the error distributions.

These values are very close to those observed with the switch curve
display. If anything, they are slightly lower. This is the result

of the fact that the predicted trajectory approaches the origin
with greater velocity than that with which the state indicator ap-

proaches the switch curve. This velocity magnification causes the
effects of limited visual acuity to play a relatively smaller role
in the model for the standard deviation.

A probability plot similar to that of Fig. 9 shows that the
errors are distributed normally. The mean errors are slightly

early; this is probably the result of the fact that the x-intercept
of the predicted trajectory is decelerating as it approaches the

origin. This effect is well known. Gottsdanker 5±, for example,
demonstrated that subjects consistently underestimate the velocity

of an accelerating target and overestimate the velocity of a de-

celerating one.
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3.5 Errors of Planning

The sources of error treated in the previous sections were

those "_-,,_.___.... during_ the execution of a switching response,
the proper moment for which was indicated explicitly by the dis-

play. With the unaided phase plane and single-varlable displays,
additional sources of error arise. The human controller must

remember the optimal switching strategy by himself. When using a
phase plane display, he sees the state of the system, but must
remember the position of the switch curve. When using the single
variable display, he sees only the lowest order state variable.

He must derive the higher order variable by observing the lower
order variable and applying the knowledge of the system state

equations which he has gained through observation of the shapes
of the state trajectories in various regions of the phase plane.
He must then compare these state variables with the memorized
switch curve.

How well can a human controller remember a switch curve which

he has learned? This is obviously a complex task, which will
depend both on the ability of the individual controller and on the

nature of the switch curve. A curve which is simple in shape
should be easier to remember accurately than one which has a com-
plicated shape. The accuracy with which the curve can be remembered

will also vary with position along the curve; accuracy should be

high where the curve lies near a fixed reference point, such as
the origin, and lower where the curve lies far from any reference

points. Accuracy should also be higher when the shapes of the
state trajectories give clues to the position of the switch curve.

The double integrator system is a system of this latter type,
in which the shape of the state trajectory contains information
about the optimal strategy. A study of the nature of the state
trajectories (as discussed in Section 2.2) shows that whenever

the input switch is reversed, the system state will move along a

new trajectory which is symmetric to the old trajectory about a
vertical llne through the swltchpolnt. Therefore, the x-coordinate

of the swltchpolnt will be exactly halfway between the x-intercepts
of the old and new trajectories. This represents an important clue
for the human controller. If he watches the state indicator cross

the x-axls, and then switches when it has moved halfway back toward

the origin, the new trajectory will intercept the x-axls at the
origin.

This same strategy can be used with the single variable display.
The state indicator moves only along the x-axls, so that at an

"x-axls crossing," the state indicator will decelerate, stop, and
reverse direction. The absence of velocity information should not

degrade performance, since only the x-position information is
utilized.
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Because of these features, the double integrator system is
clearly not a typical case from which general conclusions about

the use of unaided displays may be drawn. Only a brief descrip-
tion of the model developed in the thesis report will be given
here.

The model assumed that the switching error variance could be
partitioned into a variance caused by errors in planning where to

switch (i.e., estimating the halfway point) and a variance caused

to errors in executing the switch once it had been planned:

2 2 2
c = Cp + oE

It was assumed that the variance caused by errors in execution was

the same as for the switch curve display:

2
cE = (.020 + .033 V) 2

The variance caused by errors in planning was derived from an

assumption that the human controller can estimate the halfway point
with a standard deviation

°x = KxlXl

and was found to be

°P2= K2(X2x+ Ixl)

where the constant Kx depends on the ability of the human controller.

This model was found to agree fairly well with the error

distributions obtained from the subjects. The best fit values

of Kx were found to vary significantly between subjects. The

values obtained did not, however, change significantly as the
gain on the Y-varlable was reduced to zero. This fact supports
the model assumption that, because of the nature of this system,

only the x-variable information is utilized by the controller.

The experiments showed that the mean switching errors were
small, but statistically different from zero. The means were

biased slightly toward the late side, but showed no consistent
behavior as a function of subject or display.

It was concluded that these nonzero mean errors are the result

of the delayed feedback of switching error which the controller

receives. With the aided displays, this feedback is immediate.
With the unaided displays, the controller must wait until the state
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indicator passes near the origin to see how well he switched.
Apparently, this delay is sufficient to degrade performance to the
point where the zero mean assumption no longer proves strictly true.

4 0 ..... ,_,m_ _,_T_U _. UNDAMPED OSCILLATOR SYSTEM

Experiments were also conducted with all five displays for an
undamped oscillator system, which obeys the equations:

= .5Y

= -.5x + .625
m

The time-optimal state regulation strategy required for this system
is considerably more complicated than that required for the double
integrator.

The results of the experiments were used to test various pre-

dictions based on the model developed for the double integrator.
Several new insights into the human controller's behavior were

gained, and a more sophisticated model resulted. In particular,
the results of poor preview of the point of intersection and of

poor feedback of switching accuracy were considered. The general
problem of errors of planning with unaided displays was also

treated, though the results were still found to depend greatly on
the nature of the task and the display used. One major conclusion

on this topic was that, in general, the presence of velocity in-
formation in the phase plane display is of significant aid to the
controller.

5.0 CONCLUSIONS

The experiments described in this report involved two second-
order systems, for which a two-dimensional display could be used

to describe the state of the system at any instant. The tlme-scales

at which these systems ran were purposely chosen to produce rela-

tively slow movements of the state indicator through the phase plane.
These choices allowed the investigation of the subjects' errors of

visual acuity and planning which would have been masked by their
errors in timing in faster-moving systems•

Under these conditions, the well-trained subjects were found
to be very nearly optimal in their switching responses, even with

unaided displays. Their departures from optimality could be char-
acterized as small, random deviations about an optimal mean. These
deviations were found to consist of a statistical combination of

their errors in performing the subtasks required by each display.
The subtasks were modeled in terms of the sensory Judgments and
decisions involved. The experimentally determined parameters of

these models were found to agree closely with previously published
psychophysical data.
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The fundamental sources of deviations from optimality were
divided into errors of planning and errors of execution. Errors
of planning were assumed to arise from a faulty decision as to
where a switching response ought to occur. Errors of execution
were assumed to arise in carrying out a planned response. Accord-
ing to this view, errors of planning cannot occur with an aided
display which indicates explicitly where a response should occur.
In this case, all errors are assumed to be errors of execution.

The experimental results indicated that for these slow-moving
systems, the subjects' errors of execution resulted from their
errors in anticipating the time at which the state indicatory would
intercept the switchline. The results indicate that an increase in
display gain will reduce the relative contribution of errors of
visual acuity and will result in smaller errors in th_ time domain.
With a more rapidly moving system, the timing errors will be much
larger than the errors of visual acuity, and an increase in display
gain will not do much good.

Errors of planning (i.e., of recalling the optimal strategy)
were found to depend greatly on the nature of the system, and,
unlike the errors of execution, on the ability of the subject.
Discussions of the errors of planning for the double integrator
and undamped oscillator systems can be found in Sections 3.5, 3.6
and 4.4 of the thesis report 1. For these systems with unaided
displays, the switching errors were found to be composed of errors
in planning where to switch and errors in timing the switch once
it had been planned. It was assumed that the errors of timing were
essentially equivalent to those for the aided displays, and that
the additional error variance observed came entirely from errors
of planning.

We conclude that the concept of modeling the human controller
as an optimal controller subject to perceptual and processing
errors is a promising one. A careful analysis of the nature of
the component tasks and of the human controller's behavioral char-
acteristics in performing these tasks can account for almost all
of his deviations from optimality. In particular, we feel that
the techniques of phase plane analysis allow us to treat a wide
variety of control tasks in a very general way. The exact nature
of the task and the controlled system are not important except
insofar as they affect the displayed state trajectories. Further-
more, the model produces predictions of the human controller's
performance in terms of the system and display parameters. These
equations may often prove useful in finding parameter values which
optimize system performance.
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VI. NEUROMUSCULAR MODELS



24. Mathematical DevelopmentandSolutionof a Physical Model
for MuscularContractileElements*

Julia T. Apter

University of Illinois

William W. Graessley

Northwestern University
ABSTRACT

A self-consistent model based on valid physical and chemical laws

known to govern the visco-elastic behavior of polymeric materials was

developed to be also consistent with muscular behavior. Exposure of the

model to various perturbations like stretch, loading, chemical reactions

or diffusion of ions replicated events known to take place during stretch,

loading and stimulation of muscle, whether smooth or striated. The

equations of motion of the model so perturbed were solved with an analog

computer which generated stress, strain and strain rate curves for the

model. The curves closely resembled real shortening velocity-time

curves, force-velocity curves, isometric tension development and other

muscular responses. Therefore it was possible to obtain initial estimates

of model parameters from real muscular behavior. These results call

attention to some details of real muscular behavior previously not appre-

ciated, like phase gain-angle and elastic modulus enhancement at

critical sinusoidal strain frequencies. The general nature of the model

makes it possible to formalize more complex perturbations and to

quantify a wide range of muscular behavior in a more useful and repro-

ducible way than before.

*Supported in part by USPHS grants GM-14659, HE-05808 and CA-06475.
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For the past 3 decades, analysis of the behavior of muscles has been

simplified with models combining one or two 'contractile elements" with one

or more springs as did Hill (1938), Wilkie (1949), Parmley and Sonnenblick

(1967), and Bahler (1968) (Figure 1). The behavior of contractile elements is

generally formalized as an equation relating _empirically determined muscle-

shortening velocities, v, to forces F opposing the shortening. Whether the

empirical data came from excised muscle or muscle in situ, and whether

terminal velocities or peak velocities were used, the force-velocity relation-

ship has seemed to be hyperbolic, that is, of the form

v+b (1)

Recently Vickers and Sheridan (1968) pointed out that muscle models

incorporating only springs with a Hill contractile element were inadequate to

to match muscular behavior at various stimulus levels. Therefore, they re-

placed one spring by a dashpot whose viscosity depended on stimulus levels.

This was the first important change in muscle models in the past 3 decades.

In the present paper we propose a still broader generalization by

expressing both the Hill conctractile element and the Vickers and Sheridan

dashpot in terms of molecular events in muscle. These changes seem indi-

cated since, although the Hill contractile element concept has stimulated

considerable research, it does not predict many of the important character-
istics of muscle behavior without additional hypotheses. Some examples are

the detailed time course of muscular shortening during contraction against a

load (Wilkie, 1949), isometric tension development during stimulation (Bahler,

1968; Buller and Lewis, 1965), the existence of a phase ag__n-angle between

stress and strain at certain oscillatory strain frequencies (Apter and Marquez,

1968; Apter and Marquez, in press; Ruegg, 1968), elastic modulus enhancement

(Apter and Graessley, 1968), and variability of force-velocity curves with mus-

cular damping characteristics (Vickers and Sheridan, 1968) (Figure 2).

This limitation of the hyperbolic relation is not surprising since it

indicates only that muscle, in certain special circumstances, behaves

approximately like a constant power device. There is no reason for expecting

the relationship, pe____rse, to permit predictions about the general behavior of
muscle. What is needed is a "contractile element" whose properties are

derived from the physical and chemical changes underlying muscular con-

traction. The response to any feasible forcing could then be predicted. The

present study developed a model for this purpose. Experimental data can be

_2[I -
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Wilkie, 1949.
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used to obtain numerical values for the model parameters, thereby quanti-
_-,_,_ _-,_nl behavior.

METHODS

The physical laws used to develop the model are: (1) in a spring,

stress (_ is proportional to strain _ and the constant of proportionality is E.

(2) in a dashpot, stress is proportional to strain rate _ and the constant of

proportionality is _7; (3) in a three-parameter viscoelastic solid El, E 2,
and _? can be obtained from the stress relaxation curves using peak tension,

steady state tension and the time to go from peak to steady state; (4) the

values for E l, E 2, _? and rest lengths depend on the arrangement of the

macromolecules in the system; and (5) the macromolecular arrangement in

turn may be influenced by substances or "impurities" whose entry rates into

the polymer depend to some extent on strain and strain rate (Tobolsky, 1960).

MODEL FOR A CONTRACTILE ELEMENT

A three-parameter viscoelastic model was chosen because the stress

relaxation of muscle can be represented by no simpler body (Apter,

Rabinowitz and Cummings, 1966). The mechanical response of the model is

represented by the following equation (Kolsky, 1962)

where

E2 E2 .
o +-- _ = E1 _ + (E1 + E2) --l

n

is stress and c is strain, defined as

£-£
0

E = l
0

(2)

(3)

with I being the existing length and _o the rest length of the muscle.

Let us assume that, whatever the stimulus, muscle changes its

contraction level because of the level of some substance, N, in the cell,

Let us also say that the concentration, n, of N varies with time, t, as

governed by

5 = k2e - k3n + S(t) (4)
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The term on the left is the time rate of change of n within the cell. The first

term on the right corresponds to a diffusion of N into the cell at a rate pro-

portional to the strain. The second term corresponds to deactivation or

removal of N from within the cell at a rate proportional to its concentration.

The third term represents the addition of N to the cell through stimulation.

Suppose stimulation begins at time t o and continues more or less constantly

until t 1. For this case we have chosen the following simple form for S(t):

S(t) =0 0 < t < to

= k 7 t < t < tIo (5)

=0 tI < t <00

in which k is a constant. Thus, stimulation corresponds to a constant rate
7

of admittance of N to the cell during the period of stimulation.

The instantaneous rest length and the viscoelastic parameters of

muscle are taken to be the following simple functions of concentration n.

1 = l' + o o (6)
o o l+kl n

I o

, El - E 1

{(7)
E1 = El i + k 4 n

! o

, E2 - E 2
(s)

E2 = E2 i + k 5 n

!n = q
n! -- o

1 + k 6 n (9)

with superzero and prime referring to completely relaxed (n=0) and com-

pletely contracted (n = 00) values respectively. Thus the moduli and viscos-

ity increase with n and the rest length decreases.
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All these equations have specific physical and physiological counter-

parts. The physical counterparts of equation (2) are iiiustrated in FiFdre 3.

Mathematically equation (2) is equivalent to either a Maxwell element in

parallel with a spring or a Voigt element in series with a spring. They are

generalized representations of expcrimental data on viscoelastic responses of

excised muscle (Apter et al., 1966). Inertial terms have been:omitted from

equation (2) because, in general, it is possible to design real experiments

to minimize inertial contributions, or to account for them on an ad hoc basis.

In our view equation (4) represents a highly simplified description of

the events known as excitation-contraction coupling (Sandow, 1965). This

equation is probably the simplest formalism consistent with actual events.
+ 4- ={-4-

ions such as K , Na and Ca enter the muscle cell through its membranes

during stimulation or enter through membrane "pores" created or enlarged

when the muscle is stretched. The removal term could be binding of

ions by sacroplasmic reticulum or exit of ions by pumping through the cell

membrane. Equations (6) to (9) incorporate the events known as the "sliding

filament hypothesis" of muscular contraction (Huxley (1963)). The rearrange-

ment of actin and myosin that takes place as muscle shortens (or as _o de-

creases) are assumed here also to be associated with increases in E l, E 2
and 77; their inter-relation is shown in Figure 4.

A

] oo0ooooooo o oo floooooo

B

CiNTRACTEDeeea gEL.AXE01

"%._

iU NSTRETCHED LENGTH
_o g

Figure 3. Two models for a contractile

element. They are entirely analogous

models since they are both described by

the same differential equation of motion

(equation 2). A is Maxwell model; B is
Voigt model.

Figure 4. Data obtained

from tables already

published for muscle

(Ramsey and Street, 1940;

Apter et al., 1966.)
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Undoubtedly, the precise role of ions in excitation-coupling, and the

relation between overlap of actin and myosin and the density of cross-links,

will become clearer as more work is done. It does not seem necessary,

however, to wait for more definitive results to develop a model for the

contractile element, provided of course that the empirical nature of equations

(6) to (9) is recognized, and that refinements and modifications may become

necessary as more is learned.

This model represents the elastic (or energy-conserving) properties

of materials as springs and the viscous (or energy-dissipating) properties

as dashpots since muscle, whatever its level of contraction, is a viscoelastic

material. The unique energy-producing characteristics of muscle has been

embodied in springs and dashpots whose parameters depend on the level of

some chemical in the environs of the springs and dashpots. In other words,

muscular contraction is represented not by "force generators," _T_ahler,

1968) or "internal loads," (Bahler, 1968) but by variations in spring constants,

dashpot viscosities and their unstressed lengths. The aim is to see whether

reasonable values for the parameters and their variations can, in themselves,

account both qualitati.vely and quantitatively for the behavior of various types of

mus ale.

EXAMINATION OF THE MODEL

The behavior of the model was examined with an analog computer;

the computer program is shown in Figure 5. A variety of forcings were

imposed, all of which have been used in experiments on muscle: step

function stretch, oscillating strain, stimulation of a loaded muscle free to

shorten, and stimulation at fixed length (isometric). Values for the moduli,

,c, Nn -I.

n

Figure 5. Analog computer program used

with suitable scaling factors, to solve

equations (1), (2), and (6) to (9). An in-
crease in n to simulate stimulation was

added at position N; a step-function strain

was imposed at position S. In both in-

stances K = 0. For an oscillating strain,

K was varied to vary frequency and

N = S = 0. Velocity was _ obtained from

equations in Appendix. Loading was

accomplished at F by keeping c7(0) =

E 1 £ (0) consistent with E 1 and e (0)
elsewhere in the program.
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the viscosity, and the rest length were tmken directly from experimental

stress-relaxation studies on smooth, striated and cardiac muscle (Ramsey

and Street, 1940; Sonnenblick, 1965; Apter et al., 1966).

• • . CUlllUllli:t bi unsVarious values of the kz(g= 1, , , ,7) were tested to find .........

which would simulate real muscular behavior. The absolute values of n, k 2

and k 3 in equation (4) did not appear to be contributory so long as the neces-

sary scaling factors were used. When k2/k 3 =0 and k 7 = 0, the concentration
of N remains zero and the model behaves like an ordinary linear viscoelastic

solid. When 0 < k2/k 3 < 1.5 and when k 1 = k 4 = k 5 = k6 and in the range
0.3 to 1.0, the model behaves like in vitro smooth muscle in the absence of

its usual chemical mediators for contraction (relaxed smooth muscle). With

the same range of values for k 1 , k4, k 5 and k6but 1.5 < k2/k3< 3.5, the
model behaves like smooth muscle in the presence of neosynephrine or other

chemical mediators (contracted smooth muscle). If 3.5.< k2/k3.< 7.5, k4/k 1

---2, and k 1 = k 5 -- k 6 _1, the model behaves like striated muscle. Stimulation

was simulated by letting n rise very fast, 0 < k 7 < 100 with the muscle held
at fixed length only during the stimulus and then released to generate velocity-

time curves (Figure 7) or force-velocity curves (Figure 8). Stimulation also

was imposed at several frequencies with the muscle maintained at fixed length

to give isometric tension development curves (Figure 10).

In general, the model was successful in simulating every published

aspect of real muscular behavior. The model responses are in Figures 6 - 12

and some real responses are in Figure 2.

DISCUSSION

This new model for a contractile element of muscle calls attention to

and emphasizes the remarkable similarity in behavior among several types of

muscles. For example, striated muscles were assumed to behave differently

from smooth muscles which were presumed to differ from each other (Gelfan,

1960). The present studies show that the same model can account for the

behavior of all these muscles, provided only that the sensitivity of the

Figure 6. The responses of model to a step-

function increase in length from I 1 to _ 2 >

_1 at t = t o. Response A resembles relaxed

smooth muscle, Apter and Graessley (in press);

response B resembles contracted smooth

muscle, Apter and Grae sley (in press), and

response C resembles cardiac papillary muscle.
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Figure 7. Time course of velocity, I .

It shows a maximum which occurs

later as _ increases. The numbers

on curves give actual ff values in

dynes cm -2. It was necessary to

finda set ofk i (i=1...6) such that

-E' _--_: as well as (r=El_-_
_- iJlo

at the end and the beginning of the

shortening process. Otherwise, the

relation _= _°- E2(_I+E2)Cr-EI-_o

holds, with El, E 2, n and _oregu - i i:

lated by equations (6)to (9). ij AL_j

. %o.

_ ".
u : ;

• %.. i I/
%% !

"_....o............ :J

high

o o o ,,0 £z_'e'_' high)

....o Ez

FORC E _E I

Figure 9. Force-velocity curves

using peak velocity of shortening.

Shows effect of high El, E 2 and

Not all relationships are hyper-

bolic as might be expected from

analysis set forth in Appendix.

Three force-velocity

curves taken at three stimulus

levels, quantified simply by the

level to which n was permitted to

rise as a result of input at N

in Figure 5. Here n increased

to the point where the force

started to drop; then n input was

stopped. Force rose, then fell

as velocity increased.

Figure 10. Response of model to

repetitive stimulation at constant

length and at three frequencies.

At low frequency (A) the rise in

tension is slow, periodic and reaches

a level lower than that at higher

frequency (B) and still higher (C).

D is n(t) for curve B. All curves

resemble data of Bullet and Lewis

(1965).

532



:: ::::::::i !:i!i!ii! !:iiii:

:''':::i

T I M

I
E

/' / _ _7/ ::lillii:;il;:l;::::::i I:_::iii I:;.i ,liz:

._'./" .f" /"k_": :_: ..... i ' _i .... • :./ ..... I i, i .... :

.................................. _ i ; 11_,;;

--_ ..... ]. L,L i[ ...... ;i .... iii1 _L;:I[I_ ;,,l;!im, i i:;,,:. ,i i

::::::::::::::::::::::::::::::::::: .......................... ......... _.........

Figure 11. Sinusoidal input (_) and output (_) as functions of time (B) and as

functions of each other (A) at three levels of k2/k 3.

I shows the phase gain-angle and modulus enhancement of k2/k 3 =6.

Enhancement appears an increasing amplitude of ft.

II shows the phase loss-angle and constant modulus of k2/k 3 = 0.

III shows the phase loss-angle and constant modulus reverting to phase

gain-angle and modulus enhancement of k2/k 3 - 3.

Phase loss means that ff occurs at an earlier time than _; phase gain is vice

versa.
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viscoelastic parameters to the effects of some environmental substance, N,

is characteristic (striated muscle having large values of kA (Z= 1, 4, 5, 6) ;
smooth muscle _"'_'_,*,_._*-t, sms]l___values) or that the response time is characteris-

tic (straited muscle having a larger k2/k 3 than smooth muscles), it is im-

portant to note that the same ranges of k2. values satisfy all observations on

each kind of muscle. Thus, for striated muscle the same set of k Z that
match experimental force-velocity curves also match the isometric tension

development; similarly for relaxed and for contracted smooth muscle,

This consistent match of kZ values with a particular kind of muscular
behavior makes the model highly attractive and useful. What is more, the

fact that all the reactions postulated in the model also occur, although

very slowly, in all polymeric systems (Tobolsky, 1960) is strong evidence

in favor of its essential validity. It seems logical, therefore, to conclude

that muscle behaves like any viscoelastic material, unique primarily in

undergoing the chemical changes associated with contraction and relaxation

very rapidly. Further, there is no need to hypothesize empirical energy

generators; a model which simply mediates, through a response to chemical

changes in the environment, in the conversion of chemical energy into mechan-

ical energy, can behave in all known mechanical respects like real muscle.

FUTURE EXPERIMENTS AND APPLICATIONS

The general and versatile nature of the model are making it possible

to design systems composed of several such muscle models attached to

hinged beams for analysis of limb joint action. It is feasible, for example,

to consider one set of "muscles" imperfect so that methods for quantification

of the motion of a partially paralyzed limb could be devised. The success of

the model is also conducive to the design of experiments which minimize iner-

tial effects so that equation (2) can be used rigorously.

Forcings with precisely known characteristics could be tried in vivo

so that all the k£ and El, E 2 and _ can be determined by sophisticated para-
meter estimation techniques like those used by Taylor andBrown (1965) in the

study of physical systems. This study would require use of newly developed

stress-transducers to monitor isometric tension development as well as

stress-relaxation in vivo. Viscoelastic constants obtained from these studies

could lead to measurement of in vivo ki in limb muscles whatever their state
of health, whatever the person's physical handicap. In addition, the model

could help quantify the human muscular response to vibrations and oscillations

often met in man-machine interactions and heretofore analyzed from empiri-

cal formulations.
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It is likely that the present model will facilitate quantification of

muscular behavior in general. Whatever the outcome, however, the model

has already proved worthwhile :n opening fruitful avenues for thought about

muscular behavior.
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Appendix

In order to obtain a rigorous expression for the relation between

velocity of shortening, _ , and load on the model, start with equation (1),

using equation (2) and remembering that b = o and (r=a o to reproduce

experiments of Fenn and Marsh (1935)• Then have

Solve for i •

- E2 i1 1 °

o o = E 1 lo +( E 1 + E 2) (i)

i_£i
. El o

= (E 1 + E2)E 2 ao 1----_ (ii)

Take the next time derivative of (ii) and keep in mind that 77, E 1 , E 2 and to

are all functions of time because of equations (3) and (6) to (9). Thus

E2(E 1 ÷ E2)_ - T][EIE2 + 2E2E 2 + EIE2]

E2(E I + E 2)

E22(EI + E2) 2

1-1 ll -ll
o o o

El _ + E1 I 2

0

(iii)

Find the maximal shortening velocity }* by setting (iii) equal to zero and

solve for }* This is

• [E2(E I + E2) 6 - T][EIE2 + 2E2E 2 + EIE2] I - l °

= (_o - E1 l
l* l° EIE2(E1 + E2)n o

El (1- 1o)
+

o

+l

Therefore the coefficient of

(iv)
E1

o

If E 1 is high, then it is large in comparison with E 2 and l} 1 is small.

ooC _1! is also small, so that, for high E 1
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L_
l* °

o

so that _r*is not a strong function ofcr o if E 1 is high• This is in keeping with

the computer output summarized in Figure 9. If E 2 is high, it becomes nearly

equal to E 1 and

_* _, - 1_1 (£ - "to) '_o (vi)
E1 1

o

so that, again _*changes only slightly with %, again in keeping with the com-

puter output•

On the other hand, if _ is high and _? is therefore small, 1" is a strong

function of cro as the computer output suggests.

539



25. Muscle Spindie Models: Multiple input-Multiple

Output Simulations *

Gerald L. Gottlieb and Gyan C. Agarwal

University of Illinois

I. INTRODU CTION

The mammalian muscle spindle, as recent anatomical studies have shown

[ 1, 2, 3, 4, 5 ], is a highly complex sensory organ connected in parallel with

skeletal muscles for detecting change and rate of change in length in those

muscles. Each spindle consists of several "intrafusal" fibers (as distinct from

"extrafusal fibers of which the bulk of skeletal muscle consists) which appear

to fall into two groups, with respect to their anatomical and their physiological

characteristics. A simple example is illustrated in Figure 1. The larger type

PRIHARY SENSORYAXON

SECONDARY SENSORY AXON

PLATE AND TRAIL PRIMARY SECONDARY TRAIL AND PLATE
MOTOR ENDINGS SENSORY SENSORY MOTOR ENDINGS
ON BAG FIBER ENDING ENDING ON CHAIN FIBER

t mm T.IOp

Figure 1: Drawing of a simple, two-fiber, mammalian muscle spindle show-

ing the two types of fibers and efferent and afferent innervation.

*This work was partially supported by NIH Training Grant 1436-03.
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of fiber consists of striated contractile tissue with a noncontractile equatorial

region which possesses nuclei but lacks myofilaments. The distribution of nu-

clei within the equatorial region has led to naming this type the "nuclear bag

fiber." The smaller fibers have striations and nuclei throughout their entire
length and are called "nuclear-chain fibers. ,,

The efferent innervation to the fibers is by way of the gamma-motor ( y-

motor) or fusimotor system. The details of spindle innervation by the y-motor

system is in much dispute [ 1, 2, 6 ] .

It is agreed that there are two anatomically distinct kinds of fusimotor in-

nervation, distinguishable by the nature of the nerve endings. There are " y-

plate" fibers, ending in small endplates similar to those at extrafusal myoneural

junctions and " Y-trail" fibers whose endings are more diffuse. [There is ac-

tually a third kind of innervation, the /3-plate ending which we will not discuss

here. ] It is not agreed as to whether both types of endings are found on both

bag and chain fibers, as Barker [1] holds. According to Boyd [2] , plates

are only found on bag fibers and trails only on chain fibers.

The mechanism by which Y-efferent nerves affect afferent output is not yet

clear. Activation of skeletal muscle has definite influence in increasing the

stiffness and viscosity of the muscle [7 ] . This, in all likelihood, happens to

intrafusal muscle too, although it has not been verified experimentally. Such

changes in parameter values would modify spindle response to stretch.

The amount of force produced by intrafusal contraction is known only

roughly by measurement [8, 9] or computation [10, 11] and those measure-

ments are of whole spindles without differentiation between bag or chain fiber

contraction. Boyd has stated [12, 13] that contraction is more pronounced and

faster in chain fibers than in bag fibers but much remains to be learned about

this aspect of spindle behavior. The very tentative conclusion that has been pro-

posed [14] is that dynamic stimulation controls output mainly through paramet-

ric modification by trail endings while static stimulation works through force

generated in the chain fibers by plate endings.

The afferent innervation from the spindles is also of two types. The primary

afferent has its endings both on the nuclear bag (the annulospinal ending) and on

the nuclear chain. The secondary afferent usually has endings only on the nuclear

chain. When the muscle is stretched or the y-motor nerves stimulated, action

potentials are recorded in the primary and secondary afferent nerves. Cor-

responding to the anatomical observations described above is an equally bimodal

response with respect to both stretch and stimulation as recorded from the two

types of nerves. In Figure 2 are shown some typical recordings from spindle

afferents with and without y-motor stimulation.
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Response of a cat's primary ending to stretching;

a, b, during dynamic fusimotor stimulation at 20/sec;

c, d no stimulation (4).

Response of a rabbit's primary ending to stretching.

1. No stimulation.

2. Dynamic fusimotor stimulation at 105/sec. (3).
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Effects of dynamic fusimotor stimulation on a cat's

primary (p) and secondary (s) endings during stretch.

1. No stimulation.

2. Dynamic stimulation at 100/sec

3. Same as 2 with vertical scale primary response

reduced. (2).

Effects of static fusimotor stimulation on a cat's primary

(p) and secondary (s) endings during stretch.

1. No stimulation.

2. Static stimulation at 100/sec (2).
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Figure 2. --Some typical spindle responses taken from the literature.
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The purpose of this paper is to describe some simulations of a linear,

lumped-parameter mechanical model of the muscle spindle as a neurally con-

trolled transducer of stretch and discuss the requirements such a model places
on the mechanisms of control. To do this, we shall first summarize the var-

ious types of inputs that have been described by numerous investigators [ 15,
16, 17, 181

In order to clarify our terminology, yet remain reasonably consistent with

the physiological literature, let us define three terms, "dynamic sensitivity,,,

"static sensitivity," and "bias." These refer to steady state behavior after

transients have died out. The dynamic sensitivity is a measure of that com-

ponent of the spindle afferent output which is proportional to the rate of spindle

stretch. It has units of pps/mm/sec. The static sensitivity is a measure of

that component of the spindle afferent output which is proportional to the amp-

litude of spindle stretch. It has units of pps/mm. The bias is the tonic com-

ponent of the spindle output that is independent of stretch. It has units of pps.

The Y-motor system can be divided into two groups, dynamic and static

fusimotor fibers, on the basis of their differential effects on the primary and

secondary afferents. These effects are summarized in Table 1. The pri-

mary afferent is influenced by stimulation of both dynamic and static fibers,

the former having their most pronounced effect on the dynamic sensitivity

and the latter enhancing the bias and static sensitivity. The secondary

afferent is influenced almost solely by the static fusimotor fibers.

TABLE 1

_0

o=
_9

L

Bias

Dyamic

Sensitivity

Static

Sensitivity

Bias

Dynamic

Sensitivity

Static

Sensitivity

Unstimulated Dynamic Fiber Static Fiber

Stimulation Stimulation

Variable

Significant

Significant

Variable

Slight

Significant

Increase

Increase

No Effect

No Effect

No Effect

iLarge Increase

Decrease

Increase

increase

No Effect

Increase
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II. MODEL

The model we have chosen for our simulations is shown in Figure 3.

It is an extremely general visco-elastic system for which we wish to establish,

not merely a transfer tunction of th_ _p,lu_,.......... _---'_,u_an anatomical-topological

equivalence such that displacements of the model nodes give a direct quanti-

tative measure of deformations of the spindle's sensory regions.

The upper half of Figure 3 is the nuclear bag fiber which consists of a

lumped tendon and series elasticity, two identical contractile sections repre-

senting the larger intrafusal muscle fibers and a noncontractile nuclear bag
from which part of the primary output is taken. The nuclear chain fiber in the

lower half of the figure, is attached to the bag fiber at the midpoint between the

two contractile sections. It has its own independent contractile section and a

noncontractile sensory segment. This segment provides the other portion of

the primary output and all of the secondary output.

Before discussion of our simulations on this system, it would be of value

to consider, in qualitative terms, the properties of the system that are impor-

tant in duplicating spindle behavior. As was pointed out by Crowe and Matthews

/

NUCLEAR BAG DYNAMICMOTORFIBER ,

\ X3 / _ X 2 _ \

I I I SER,ESELAST,C,TY
r,, I I K2 IIIK, X,

a. I I IIL , t'
X /"-_ F= NUCLEARCHAIN FIBER

l

BsE "

/
NUCLEAR CHAIN

\ /
STATIC MOTOR

FIBER

Figure 3: Mechanical model of the simple mannalian muscle spindle shown

in Figure 1.
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(18) and demonstrated in previous simulations (10, 19), the velocity sensi-

tivity of the bag fiber can be accounted for by assuming that it is considerably

stiffer elastically than the contractile tissue. The chain fiber, on the other

hand, appears fairly uniform in composition. In terms of the model, it is

convenient to talk in terms of a time constant T 1 defined by equation (1).

T. = B./K. (1)
l l l

The model response to stretch would be appropriate if the time constant of the

bag, T4, were to be much smaller than that of the muscular segments T1 and

T 2 while the two chain time constants T 3 and T 5 were to be equivalent magni-
tudes to each other.

When stimulation is introduced, the three measures of spindle response

discussed previously, namely bias, static sensitivity and dynamic sensitivity

are useful to systematize the discussion. Only the contractile segments are

assumed controllable with respect to force output and parameter changes.

1. Dynamic Stimulation - Primary Ending

a. The bias can be increased by either an increase in K1, K2, or

output from the force generators F D.

b. Increased static sensitivity requires an increase in K1, K 2.

c. Increased dynamic sensitivity requires an increase in T1/T 4

and T2/T 4.

2. Dynamic Stimulation - Secondary Ending

This is relatively uncoupled from dynamic stimulation because of

the fair degree of symmetry of the bag fiber about the chain fiber's

point of connection.

3. Static Stimulation - Primary Ending

a. The increased bias must come from the nuclear chain components

of the primary output.

b. Also from the chain component.
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c. Decreases because of increased viscous load of the chain on the

bag fiber when B 3 increases. This is not a large effect.

4. StaticStimulation - Secondary Ending

a. The bias is increased either by an increase in K 3 or output from

the force generator F S.

b. The static sensitivity is increased by an increase in K 3.

c. The dynamic sensitivity is not significantly changed.

III. METHODS

The model of Figure 3 is most simply simulated on a hybrid computer.

Since we had greater access to digitalthan hybrid computational facilitieswe

used a somewhat modified version of IBM's Continuous Systems Modeling

Program (CSMP), an analog simulator, on our IBM 1800 computer. The

problem is set up conventionally with one exception we shall note below.

The system differential equation (2) is linear.

K6(X-Xl) = Kl(Xl-X 2) + B1 (:}i+12) + FD (2-a)

K6(X-Xl) = K2(x2-x 3) + K3(x2-x 4) + B2(:_2+_3) + B3 (12-:}4) + FD + Fs (2-b)

K2(x2-x3) + B2(12-_}3) + FD = K4 x3 + B4 _3

K3(x2-x 4) + B3 (:}2-:_4)+ FS = K5x 4 + B514

(2-c)

(2-d)

A set of nonlinear equations in which the elasticities and viscosities are depen-

dent on length and/or velocity were deliberately not used because, as we

shall show, almost all the qualitative features of spindle response can be

simulated without the vast increase in computational complexity required for

such a nonlinear model. An important complicating feature we do require,

however, is that the intrafusal muscular components K1, K2, K 3, and B1,

B2, B3 vary with the level of ),-control. In order to avoid the need for

time-varying parameters, we restricted the inputs in a manner that when

stretch and fusimotor inputs were both applied, their respective transient
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responses did not overlap in time. In this manner, stretch would be applied

only after the parameters had reached appropriate equilibrium levels for the

degree of ifusimotor stimulation. Since all the experimental data we found

in the literature has been gathered under these same conditions, this limitation

is not severe at present.

Under the above constraints, we can take the Laplace Transform of the

differential equation (2) and then rewrite them as in equation (3) for analog

simulation.

x I x2 x FD

= + a 2 --+ a 3 -- + a 4 --+ x 2Xl al s s s s (3-a)

x I x 2 x 3 x 4 FD

x2 m bl --s + b2 --s + b3 --s + b4 --s + b5 Xs + b6 --s

F S

--+ b 8 x3 + b9 x 4 (3-b)+ b7 s

x 2 x 3 FD

x3 = Cl--s + c2--s + c3--s + c4 x2 (3-c)

x 2 x 4 F S

x4 = dl --s + d2 --s + d3 --s + d4 x2 (3-d)

We must proceed one step further, however, since a constraint of CSMP is

that there be no loops in the simulation which do not have an integrator.

Therefore, we choose to rewrite equation (3-b) by combining it with (3-c)

and (3-d) and get equation (4). [Equations for ai, ci, di, and ei in terms of

the model parameters are listed in Appendix A.]

x I x 2 x 3 x 4 FD F S

x2 = el--s + e2 --s + e3--s + e4--s + e5 Xs + e6--s + e7--s
(4)

The block simulation of these four equations (3a, c, d) and (4) is shown

in Fi_tre _ T_e _"+_"*........ _._ of section C is nuclear bag stretch and the output

of section D is nuclear chain stretch. The primary output is given by equation

(5) and the secondary output by equation (6).

f] = = x 3 + B x 4 (5)

f2 = "6x4 (6)
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IV. SIMULATION

Figure 5 shows some results of our simulations for primary and secondary

outputs. The parameters used in the simulation are listed in Appendix B.

In Figure 5a, the primary output in response to stretch and y-stimulation
is shown. In the lower curve, the spindle is relaxed and unstretched for the

first 0.5 sec and then stretched 3 mm at 6mm/sec. The middle curve shows

the effects of adding static y-motor stimulation of 100 pps starting at t = 0

while the upper curve shows the effects of dynamic y- motor stimulation of

100 pps. Quite clearly, dynamic stimulation affects dynamic and static
sensitivity as well as bias by stretching the nuclear bag and by increasing the

viscosity of the bag fibers contractile components. The effects of static

stimulation are simply increased bias and static sensitivity from the chain

branches of the ending.

Figure 5b shows the output of the secondary afferent for the same inputs.

The absence of dynamic sensitivity and the ineffectiveness of dynamic stimu-

lation are apparent.

These curves show that our model does mimic spindle behavior in most

aspects of transient ramp-stimulus performance as listed in Table 1. This

is not exactly suprising for, as Archimedes said, "give me enough parameters
and a model to fit them and I will simulate the world."

V. DISCUSSION

The greatest difficulty encountered in evaluating the model is quantifying

the data on spindle behavior that is presented in the literature. We shall not

dwell on that problem here but instead consider the consequences of our

chosen model in terms of response to stretch and possible mechanisms of

y -control.

Since the model is linear, both primary and secondary steady state out-

puts are proportional to the degree of stretch. The primary output is also

linearly proportional to stretch velocity if the duration of stretch is not too
_ _* _,._ one common feature of thebrief. This is as it should be and _, in f,_._, *_--

models that have appeared previously [ 7, 10, 11, 20, 21, 22].

The most interesting feature of the model, however, is that it allows us to

isolate the various effects of Y-stimulation. To begin with, it is clear

that the only effect dynamic or static force generators can have is to increase
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R_qPOn-qe_--- of the primary ending

TIME(SEC_ J'_ 1.5

(a)

Response of the secondary ending
r-------

/-"-'---4
__ / I

• ._ -- _--_________
TIMEISECl 12 1,5

(b)

Figure 5.--Simulated responses of a rnamalian muscle spindle during stretch.
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the bias of the output. They provide an additive component to the output with

no influence on either dynamic or static sensitivities.

The effects of parametric variation are more profound. The static sensi-

tivity is a function solely of the elasticities and any variations in K1, K2 or

K3 by y-efferent activity would appear there. Furthermore, if the spindle

is maintained under some degree of passive stretch, an increase in the stiffness

of the muscular elasticities will also appear as an increase in the steady state

output, an increase proportional to the change in K and to the initial degree of
stretch.

The dynamic sensitivitiesare more complicated functions of both the elas-

ticitiesand viscositiesbut certain generalizations can be made. In the bag

fiber where T4<< T1, T2, changes in B I and B 2 wilI appear as almost pro-

portional changes in primary dynamic sensitivity. By contrast, the dynamic

sensitivityof the chain fiber willbe only slightlyinfluenced by changes in BI,

B2 or B 3. Changes in viscosity will not affectthe output while the spindle

length is constant.

It is instructive, too, to look at the actual degree of deformation of the sensory

regions that is caused by stretching the spindle. In the unstimulated case,

the peak extension which occurs in the sensory region of the chain fiber is 23%

of the total spindle stretch. By contrast, the peak extension of the sensory

region of the bag fiber is only 0.8% of the total stretch. The other 99.2% of

the deformation occurs to the non-sensory elements. This fact is a direct

consequence of the great stiffness of the bag's sensory area as compared to

the stiffness of the rest of the spindle.

These observations on model behavior suggest that the following conclusions

may apply to the physiological spindle.

. The control exerted by the dynamic y-efferents on the dynamic be-

havior of the primary afferent must be through modification of the ratio

of the viscosity of the nuclear bag to the viscosity of the bag's intra-

fusal musculature. This effect would appear independently of any

force generation by the fiber nor would it be seriously affected by a
simultaneous increase in muscle stiffness.

. The control of the static y-efferents on the static behavior of the

two types of afferents must be, in part, modification of the elasticities

of either the bag or the chain but may include a large degree of output

from the force generators.
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The control of bias by the Y-efferer_s must be (by definition) by intra-

fusal force generation but the existence of this control is open to question

because changes in static sensitivity can masquerade as changes in
bias.

The question of whether the bag fiber contracts in response to dynamic

Y-stimulation will be difficult to resolve by direct visual observation

because the bag is very stiff and deforms only slightly.

In light of the above, either of the theories of y-efferent innervation

of the intrafusal fibers are acceptable. Even if both plate and trail

endings are to be found on both bag and chain fibers, the distinguishing

response of the bag fiber would be to only one type (the parametric

modifier, presumably the trail ending ) while the chain could respond

to either or both types of innervation.



APPENDIX A

The following equations relate the block simulation parameters (Figure 4)

to the model parameters (Figure 3) as determined by equations (3) and (4):

1. a - parameters

KI+K 6 K 1

aI - B1 ' a 2 - B1

K6 1

a3 = B_ ' a4 = - _i

2. c - parameters

B 2 K 2

cI = B2+B 4 ' c 2 - B2+B 4

K2+K4 i

c 3 = B2+B 4 ' c 4 - B2+B 4

3. d - parameters

K 3

B3 d2 - B3+B 5
d I - B3+B 5 '

K3+K5 !

d3 = - B3+B---_ , d4 - B3+B 5

_4



4. e - parameters

eI - K6H ,

7

e3 = IB4K2 - B2K4 1
B2+B 4

e5 = K6H ,

e 7 = - H

where H =

B2B 4 B3B 5
+--

B2+B 4' B3+B 5

H_

B4K2 _]
e2 = - LB--_B4 + H

e 4 = [ _3+--B5 j H

e6 = - H
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APPENDIX B

The following parameter values were used in the simulations shown in

Figure 5:

K I = .02 N/M

K 2 = .02

K 3 = .03

K4 = 4.0

K 5 = .03

K 6 = 2.0

fD = dynamic y firing rate

fs = static y firing rate

_F D
- .0003,

_fD

_K I _K 2

fD _fD

_K 3

_fs

=/8 = 30

B I = .025

B 2 = .025

B3 = .001

B 4 = .01

B 5 = .001

_B 3
--- = .01

3f s

--= .0003

= .01

(cf eq 5)

N/M/sec

556



I.

.

.

o

o

o

t

So

.

10.

11.

REFERENCES

_,_-.iro..._., _n. _ "The Motor Innervation of the Mammalian Muscle Spindle,"

Nobel Symposium-Muscular Afferents and Motor Control, R. "_-"_
Editor, John Wiley & Sons, N. Y., 1966.

Boyd, I. A., "The Motor Innervation of Mammalian Muscle Spindles,"

J. Physiol., 159, 1961.

Boyd, I. A., "The Tenuissiumus Muscle of the Cat," J. Physiol., 133,
1956.

Boyd, I. A., "The Innervation of Mammalian Neuro-muscular Spindles,"

J. Physiol., 140, 1957.

Boyd, I. A., "Simple and Compound Mammalian Muscle Spindles",

J. Physiol., 145, 1958.

Barker, D. and Boyd, I. A., Signed contributions in Nobel Symposium

Muscular Afferents and Motor Control, R. Granit, Editor, John Wiley

and Sons, N. Y., 1966.

Agarwal, G. C., Gottlieb, G.

Human Postural Regulation,"

March, 1969.

L., and Stark, L., "Some Aspects of

MIT-NASA Conference on Manual Control,

Diete-Spiff, K., "Tension Development by Isolated Muscle Spindles of

the Cat," J. Physiol., 193, 1967.

Krnjevk, K. and Van Gelder, N. M., "Tension Changes in Crayfish

Stretch Receptors," J. Physiol., 159, 1961.

Agarwal, G., Gottlieb, G. L., and Stark, L., "Models of Muscle

Proprioceptive Receptors," U. of Mich. - NASA Conference on Manual

Control, March, 1968.

Gottlieb, G. L., Agarwal, G., and Stark, L., "Stretch Receptor Models

1: Single Efferent, Single Afferent Innervation," IEEE Trans. on

Man-Machine Systems, March, 1969.

557



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Boyd, I. A., "The 13ehavior of Isolated Mammalian Muscle Spindles

with Intact Innervation," J. Physiol., 186, 1966.

Boyd, I. A., "The Mechanical Properties of Mammalian Intrafusal

Muscle Fibers," J. Physiol., 187, 1966.

13essou, P. and Laporte, Y., "Observations on Static Fusimotor

Fibers, " Nobel Symposium-Muscular Afferents and Motor Control,
R. Granit, Editor, John Wiley & Sons, N. Y., 1966.

Bessou, P., Laporte, Y., and Pages, B., "Similitude des effets

(statiques ou ds_namiques) exeerces par des fibres fusimotriees uniques

sur les terminaisions pr[maires de plus[curs fuseaux chez le Chat,"

J. Physiol, Paris, 58, 1966.

Appelberg, 13., 13essou, P., and Laporte, Y., "Action of Static and

Dynamic Fusimotor Fibres on Secondary Endings of Cat's Spindles,"

J. Physiol., 185, 1966.

Emonet-Denand, E., Laporte, Y., and Pages, B., "Fibres Fusimotirces

Statiques et Fibres Fusimotrices Dyamiques Chez le Lapin, " Arch. Ital.

Biol., 104, 1966.

Crowe, A. and Matthews, P. t3. C., "The Effects of Stimulation of

Static and Dynamic Fusimotor Fibres on the Response to Stretching of

the Primary Endings of Muscle Spindles," J. Physiol., 174, 1964.

Houk, J. C., Cornew, R., and Stark, L., "A Model of Adaptation in

Amphibian Spindle Receptors," J. Theoret. Biol., 12, 1966.

Anndersson, B., Lennerstrand, G., and Thoden, U., "Cat Muscle

Spindle Model," Digest of the 7th International Conference on Medical

and Biological Engineering, Stockholm, 1967.

Angers, M. Denis, "Modele Mecanique de Fuseau Neuromuseulaire

de-efferente: Terminaison primaires et secondaries," C. R_ Acad.

-_._o Paris, _"'_, 1965.

Crowe, A., "A Mechanical Model of the Mammalian Muscle Spindle, "

J. Theoret. Biol., 21, 1968.

558



26. Some Aspects of HumanPosturalReF.uiation*

Gyan C. Agarwal, Gerald L Gottiieb

University of illinois

and Lawrence Stark

University of California, Berkeley

I. INTRODUCTION

Elementary neuromuscular reflexes are thought to play a major role in

the regulation of human posture (I). One of the most important of these is

the stretch reflex which produces a muscular force in opposition to lengthening

of a muscle. The anatomical components of this reflex are: I) a physiological

transducer, called the spindle receptor, which senses the length and the rate

of change of length of a muscle and converts this information into a neural

signal**; 2) the motor neurons which combine the feedback signal from spin-

dles with other control signals; and 3) the muscle together with its load which

is the system being controlled. The components are interconnected by afferent

axons from spindle receptors ---_'_wiiL_i,form., in....f he spinal cord, excitatory con-

nect_ons with antagonist motor neurons and inhibitory connections with an-

r_:gonist motor neurons, and by efferent axons of motor neurons which

innervate the muscle.

That this i nterconnection of physiological components can be recognized

as a feedback control system (2) is apparent from the block diagram of Figure

i. For convenience we attach the name "postural control system," or ',PCS, "

since control of the length of the musculature implies control over joint

position(3).

Partridge and Glaser (4) have investigated some general properties of

the stretch reflex such as a phase advance of the tension response to sinusoi-

dal stretching in decerebrate and chronic spinal cats. They proposed a reflex

control system with output determined by both muscle length and the rate of

change of muscle length. From his measurements of electromyographic (EMG)

*This work was partially supported by N!H Training Grant 1436-03.

**The role of gamma efferent control of the spindle is not clear at present.

By proper fusimotor activation of spindle, spindle afferent discharge can

be interpreted to be proportional to the tension in the spindle. (6)
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Figure 1: The Organization of Muscular Control. The postural

control system, which is the topic of investigation in this

paper, is located below the dashed line. (From Houk [3] )

activity and tension developed during forced movements of a joint, Hammond

(5) concluded that the muscle servo responds as if there were: i) detectors

of acceleration or higher derivatives within the muscle and having a short

reflex arc and a high sensitivity; 2) detectors of velocity within the muscle

with a longer latency and different feedback path; and 3) detectors of position

either in the muscle or outside it with a low sensitivity. He observed a dead

time of approximately 70 msec between the beginning of stretch and the tension

reflex response.

If one drives the system with force inputs and measures the responses

as position of the joint, the closed-loop behavior of the system is observed.

Johnson (7) delivered random torque inputs to a system consisting of the

antagonistic muscle groups which produce flexion and extension of the wrist

together with their reflex connections. He argued that the r_n_--1 _^_---

connections which are known to exist between antagonistic muscular systems

would tend to make the system more linear in contrast to a single muscle

which is a uni-directional device. His statistical analysis revealed that the

system behaved as a stiff spring which is certainly expected of a positional

control system, but it failed to uncover more profound characteristics of

postural regulation.
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1) the system which rotates the forearm (wrist rotation) anticipating some

correspondence between our results on postural regulation and those results

obtained previously from voluntary tracking studies involving the same

muscular system (3, 8, 9); and 2) the system which flexes the ankle joint

(gastrocnemius-soleus and anterior tibial muscles).

II. WRIST ROTATION SYSTEM

1. Experimental Method

A schematic diagram of the apparatus used is shown in Figure 2.

I

I 'DIGITAL COMPUTER fdpe
I

, I ,f.... I dato lines .....
I

/ IS IL_..,-I

I I I _.. ,it

I ,v I .= L_
target tracking _ o

_, ,.., otentiometer

, ,; o or XY-reco.rder

'/'handle

d
Figure 2: Schematic diagram of the apparatus for torque

motor experiments on the wrist.

The
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subject was attached to the shaft by voluntarily grasping a handle. Movement

of the forearm was limited to rotation by supporting the elbow of the subject

on a padded block. In the first set of experiments, the mechanical torque

pulse was applied by dropping a pendulum from a known position when the

subject was not in a tracking mode. (The same experiment was done earlier

by Houk [ 3] , Navas and Stark [ 9] ).

The pendulum technique, however, has the disadvantage that the initial

conditions on position and velocity must be zero. Also the noise at the time

of impact is an additional stimulus. To remedy this situation, the mechanical

torque pulse was generated by a torque motor attached to the shaft of the

handle. To control the initial conditions on the position and velocity, the

onset of the torque pulse input, and the mental set of the subject, the subject

was instructed to track a specially synthesized triangular waveform which was

generated by an on-line digital computer consisting of a preassigned number

of cycles of triangular wave with random slopes after each cycle of a trian_a-

lar wave of known slopes. Mechanical torque pulses were applied at a chosen

point on the known triangular wave in the direction of both pronation and

supination as shown in Figure 3 (10).
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Figure 3: Known triangular wave and the location of torque disturbance

in torque motor experiments.
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-- _ e._d_..,_m Experiments2. Results _ _ 1_11

Figure 4, These responses were approximated by a second order linear

differential equation. The three mechanical parameters for the hand, J =

moment of inertia (kg. m_), B = coefficient of viscous damping ( n. m. sec. / rao. ),

and K = torsional spring constanf (n. m./rad. ), were calculated in the manner

used by Houk (1963) and are shown in Table i. These values were adjusted for

the inertia of the handle ( J -- 0.07 x 10 -3 kg. m2). Viscous damping of Lhe

apparatus was negligibly small (of order 10-5). For comparison the average

values for J, B, and K as obtained by Houk, Navas and Stark ill, p. 357) are

shown in the last line of Table I.
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Typical responses in pendulum experiments. (a) Relaxed,

(b) Moderate Tense, and (c) Tense State of the Subject (GA).
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TABLE 1: Mechanical Parameters of Hand

Pendulum Experiment (Subject GA).

Tension

Relax

Moderate

Tense

Tense

iAverage

Values

Houk, Navas

and Stark

2.65 x 10-3

-3
2.33 x I0

3.12 x 10 -3

-3
2.7 x i0

-0.5 x 10 -4

B

0.9 x 10-2

-2
2.17 x i0

-2
5.65 x !0

1.5 x 10-3

K

1.05

2._2

6.66

3.4

2.0 x 10 -2

I

3. Results -- Torque Motor Experiments

A typical response of the hand system due to torque pulse input in a

tracking situation is shown in Figure 5a. That such responses are quite

reproducible is evident from Figure 5b where 10 responses of a typical run

are shown for the same amplitude of the torque pulses and nearly same

initial conditions on the angle and angular velocity. Note that the responses

of the postural systems are merely superimposed on the voluntary tracking.

These responses may be approximated by a second-order under-damped

differential equation, As a matter of convenience, the angular velocity in

response to disturbance was easier to analyze on the computer than the angular

position because of the pulse response; see Figure 6a. The mathematical

expression for this response is shown in Figure 6b. Four typical responses

for the same subject with various initial conditions (as shown in Figure 3)

are shown in Figure 7. From the amplitude and frequency of the oscillations,
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Figure 5:

(b)
(a) Typical tracking and torque disturbance response

(Subject BB) and (b) ten responses of a typical run.

it is clear that the system dynamics are asymmetrical and the response de-

pends on the direction of rotation at the time of torque input as well as the

direction of the torque input. The values of the parameters J, B, and K
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Figure 6: (a) One typical response in the analysis phase and (b)
Mathematical model and expression for angular velocity.

(as shown in Table 2) are obtained using the second and subsequent peaks

in the angular velocity response. These values have been corrected for the
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moment of inertia (1.03 x 10 -3 kg. m 2) and the damping (1.27 x 102 n. m.

sec./rad. ) of the torque motor.

S-P P-S r'-"r-

IO _ RAD/S

i-,,i i,-i
2.5 SEC

.7 RAD/S

I&.75 RAD/S z

Figure 7: Typical responses in the four cases shown in Figure 3.

(Subject BB).

TABLE 2: Mechanical Parameter of Hand-Torque

Motor Experiment with Tracking (Subject BB).

J i--nkg..rn2

9in
N.m

K in rod

o
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¢_.
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ROTATION
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J=I. OXIO

-2
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K:2.2

-3
J= I.I X i0

-2
B =0.9 X I0

K-2.9

-3
J = 0.3XIO

-2
B = 0.7X I0

K=2.0

-3
J = 0.5 X I0

-2
B =0.3XlO

K=2.6
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In the second experiment, the response of the postural system was com-

pared with and without tracking. Some typical responses are shown in Figure

8, where (a) and (t)) are for a pulse of 1.39 n.m. of 100-msec. duration and

(c) and (d) are for pulse of 2.05 n.m. of 50-msec. duration.

S-P g NT-P S-P IO.& RAD NT-P

i5.7 RAD/S

2.5 SEC

&75 RAD/S

PULSE 1.59 nm, I00 rn sec PULSE 2.05 n.m, 50m sec

(a) (b) (c) (d)

Figure 8: Typical responses with and without tracking. (Subject PL).

The parameter values are shown in Table 3. These values have also been

corrected for the inertia and damping of the motor.

4. Discussion -- Pendulum Experiment

In the pendulum experiment, the moment of inertia is relatively unin-

fluenced by changes in the tension of the arm (Table 1). On the other hand,

the viscosity and the stiffness increases with increased tension by approxi-

mately the same order of magnitude, for example, B changes by a factor of

6.28 from a relaxed to tense state and K changes by a factor of 6.35. Houk

(3, page 27)in his isometric tension experiments made the fo!!owing estimates

of the viscosity and stiffness for the human forearm:

a. Pronator muscle

B S = Apparent viscosity in shortening = 70 x 10 -2 n. m. sec./rad.
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TABLE 3: Mechanical Parameters of Hand-Torque

Motor Experiment with and without Tracking

(Subject PL).

Pulse

iTorque

1.39 n.m.

12.05 n.m.

Width

i00 msec.

50 msec.

Tracking in Pronation-

Pulse in Supination

J = 0.29 x 10-3

B = 1.4 x 10-2

K= 2.3

J -- 0.76 x 10-3

B = 2.83 x 10-2

K = 2.95

No Tracking - Pulse

in Supination

J = 0.27 x 10 -3

B = i. 3 x 10 -2

K = 1.96

J = 1.4 x 10 -3

B = 2.36 x 10-2

K = 3.08

B L = Apparent viscosity in lengthening = 70 x 10 -2 n. m. sec./rad.

K = Stiffness = 10 n. m./tad.

b. Supinator muscle

B S = 60 x 10 -2 n.m. sec./rad.

B L = 140 x 10 -2 n. m. sec./rad.

K = 10 n. m./rad.

Considering the forearm as a solid cylinder, 6 cm in diameter, 30 cm long

and 1 gm/cm 3 density, Houk [3] calculated the anatomical moment of inertia

of the arm J=0.4x10 -3 kg.m 2.

A comparison of these numbers with the values shown in Table 1 indi-

cates: (a) K can change by a factor of about 10 from the relaxed to tense iso-

metric condition, (b) the calculated moment of inertia represents that com-
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ponent of the muscular activity which varies with acceleration, in addition to

the moment of inertia of the anatomical structures of the forearm. The exper-

imental value of J is about seven times the anatomical value for J, and (c) B

changes considerably from relaxed to isometric case (a factor of about 70). Our

values for J, B and K in the pendulum experiment seem to agree with Houk's

data in the isometric tension experiment as well as with our torque motor

experiments (Tables 2 and 3). This raises some questions about the validity

of the data reported by Houk, Navas and Stark [11] in their earlier experiments.

(see line 5 in Table 1).

5. Discussion -- Torque Motor Experiments

The value of K seems to be relatively independent of the rotation (with

or without and direction) as well as the direction of the pulse. Although the

values range from 2.0 to 3.08 n. m./tad., no correlation can be deduced.

However, it seems that K increases with the magnitude of the pulse (Table

3). The value for K agrees with the moderately tense case in the pendulum
experiments. The values for B range from 0.3 x 10 -2 to 2.83 x 10 -2 n. m.

sec./rad. As compared with the pendulum experiments, these values range

from relaxed to moderately tense cases. No correlation is apparent, except

that B seems to increase with the magnitude of the pulse (Table 3). The
values for J range from 0.3 x 10 -3 to 1.4 x 10 -3 kg. m 2. This calculated

value of J reflects the anatomical moment of inertia ( _ 0.4 x 10 -3) as well

as muscular activity which varies with acceleration.

III. Ankle Flexion System

1. Why The Ankle Flexion System

The instrumentation of wrist rotation system is somewhat simpler than

the ankle flexion system. However, there are many disadvantages in working

with the wrist rotation system. The main disadvantage is that the

electromyographic (EMG) activity of the pronator and supinator muscle groups

cannot be reliably obtained via surface electrodes in tracking conditions

because of the shift in the position of the muscles with respect to the electrodes.

.................. ,._ ,,,_ for _nv p;-onator-supinator muscles are com-

plicated. In the ankle flexion system, EMG's are readily obtained by surface

electrodes and the mechanical linkage of the muscles is simple.

The results of the torque pulse experiments for wrist rotation system

are difficult to interpret because of the many variable factors. Due to the
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gross nature of the input-output, it is not clear what part of the response is

contributed by the stretch reflex and how much can be contributed simply to

the mechanical response. The ankle flexion system is ideally suited to study
the PCS. The results of our earlier experiments on the achilles tendon

reflex have been reported [10]. Some new results using electrical stimula-
tion are presented here.

2. Hoffman Reflex

When the tibial nerve in the popliteal fossa is electrically stimulated

(using needle or surface electrodes) at low levels, the fibers first to be

excited are the Ia afferents from the spindles of the gastronemius-soleus

muscles (GSM). About 30-32 msec. after the stimulus a synchronized

electromyogram (EMG) burst, the H-reflex (so named after Hoffman), is
recorded from the GSM [12, 13, 14, 15]. About 40 msec. after the stimulus

the isometric tension begins to rise. The H-reflex has been shown to be

monosynaptic.

As the level of stimulus is increased, the H-reflex increases until the

threshold of the GSM alpha motor fibers in the same mixed tibial nerve is

reached. At this point an EMG burst called the M-wave is seen about 8 msec.

after the stimulus. Further increase in stimulus results in a monotonic

increase in the M-wave until full recruitment of all motor units is achieved.

However, the H-wave increases only slightly more and then decreases. By

the time the M-wave is maximal, the H-wave has vanished. The explanation

for this behavior is that the Ia nerves conduct the reflex wave centripetally,

faster than the antidromic wave is conducted in the alpha fibers. Thus, the

H-wave is cancelled by the collision of the antidromic wave with the reflex

wave as it travels down the alpha motor fiber (see Figure 9).

3. EMG

Bigland and Lippold [16] showed that the rectified and smoothed EMG

varied linearly with average, constant strength, isometric foot torque and

more recently Clarke [17, 18] has shown a similar linearity between the

twitch of a patellar tendon jerk and the peak-to-peak amplitude of the cor-

responding synchronized EMG. Such linearity in normal subjects would be

a useful property for at least two reasons. First, deviations from linearity
are relatively easy to detect and might provide a useful clinical tool for

detection of possible pathology. Second, the design of prostheses using the

EMG of paretic muscles as control signals might be simplified.
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M H

.

Figure 9: Reflex response to progressively stronger stimuli

applied to the posterior tibial nerve in the popliteal

fossa. (Subject GLG). The scale is 2 my/unit. At

the far left is the stimulus artifact. The H-wave

appears about 30 msec. after stimulation, the M-wave

about 8 msec. after stimulation. The stimulus is

increasing from top to bottom.

Experimental Method

We have been studying the relationship between the electromyogram in

the GSM of normal humans and the isometric foot twitch ( AFT), in response

to cutaneous electrical stimulation of the tibial nerve in the popliteal fossa.

Our experiments were conducted briefly as follows. The subjects were

seated normally in a chair with the right leg extended and the foot strapped

to a fixed plate having attached four strain guages in a bridge circuit for

measuring [19]. The signal from these guages was also used to provide a

visual display to help the subject maintain constant levels of initial foot

torque (IFT) prior to stimulation. Differential surface electrodes for

measuring the EMG were placed on the centerline of the lower soleus about

3 cm apart and about 20 cm above the base of the foot. A ground electrode

was placed on the shin over the tibia. Cutaneous stimulating electrodes were
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placed posteriorly on the popliteal fossa and anteriorly just above the knee.

The electrical stimulus of 1.5 msec. duration was applied from a Grass

S-8 stimulator. This was triggered aL 7 to 10 sec. intervals by an IBM 1800

computer which recorded the foot twitch (at 240 samples per second) and

the EMG (at 1000 samples per second) on magnetic tape and later plotted the
results.

5. Experimental Results

In our first experiments we varied the level of the stimulus from

threshold to maximal-H and were rewarded with a linear relationship between

peak twitch and peak-to-peak H-wave. Figure 10a shows one such experi-

ment at three different levels of IFT. Our satisfaction was short lived, how-

ever, for when we held the electrical stimulus constant and varied IFT in-

stead, we obtained the "relationship" of Figure 10b. This led us to study in

greater detail the effects of IFT on the reflex H-wave and twitch AFT H as

well as on the direct response, the M-wave and twitch A FT M. These re-
sults are summarized in Figure 11a for the EMG and llb for the twitch.

6. Discussion

To explain these results we offer the following hypotheses. The H-

wave results from Ia stimulation of the alpha motoneuron and at the synapse

in the anterior horn of the spinal cord it is subject to many influences.

Figure lla shows that plantarflexion (which is the direction of the reflex

twitch) could be facilitating the motoneuron pool so that more motoneurons

are synchronously brought above threshold by the Ia volley. Conversely,

dorsiflexion inhibits the motoneuron pool. In two of our five subjects,

strong dorsiflexion almost totally inhibited a maximal H-wave. In the other

subjects, total inhibition could be achieved with reduced stimuli.

Our interpretation of AFT is necessarily more tentativethan that of

the EMG since several more physiological and mechanical stages intervene

between stimulus and response. Starting from the maximum plantar value

of IFT, the AFT H increases and the amplitude of the H-wave decreases

(Figure 11a) as plantar IFT decreases. This increase in AFT H is a conse-

quence of the increasing incremental gain of the motor units at lower moto-

neuron firing frequencies. The AFT H caused by a single pulse in a quiescent

motoneuron is greater than the AFT H caused by throwing a single

additional pulse into a 15 pulse per second train (and this AFT H in turn is
greater than would be the case ifthe motoneuron were firingat 30 pps). The
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lower the plantar IFT, the fewer motor units are tonically active and thereby
contribute more to the twitch.

In the region from small plantar IFT to small dorsal IFT, the AFT H
decreases because of declining facilitation and increasing inhibition of the

GSM motoneuron pool, as is evidenced by the decreasing H-wave. Figure

llb shows, however, that the AFT H does not continue to decrease for

stronger dorsiflexion but is maintained and then increased to near maximal

values. To explain this, note that a twitch represents the summed effects

of an increase in activity of the GSM and a decrease of activity in the anterior

tibial muscle (ATM). During plantarflexion, the former factor predominates

but during dorsiflexion, it is the reciprocal inhibition of the ATM that causes

the twitch [24]. As a result, at moderate and high levels of dorsal torque

where the GSM motoneuron pool is under strong voluntary inhibition, the

twitch primarily represents the difference in ATM activity prior to and during

inhibition. Therefore, as IFT increases in the dorsal direction, AFT H
increases. Presumably, at even higher levels of IFT the reflex inhibition

would not overwhelm the voluntary excitation and the twitch amplitude would

level off, but the present apparatus is not strong enough to test this.

From this it is apparent that when torque or torque pulses are produced

predominantly by one muscle or synergistic group of muscles, there may be

rather linear relationship between EMG and FT or A FT. On the other hand,

in any mechanical response involving activation and inhibition between

antagonist muscle groups, the EMG measured from any single muscle tells

little by itself about the mechanical response.

The arguments relating AFT M to IFT follow essentially the same logic

used with AFTH. However, the decrease in M-wave from plantar to dorsi-
flexion cannot be a consequence of spinal inhibition on the alpha motoneuron,

as it is for the H-wave, since both stimulus and response are peripheral to

the spinal cord.

Liberson et al. [20] in their isometric experiments observed a decrease

in integrated EMG of the gastrocnemius muscle as it lengthened with dorsi-

flexion of the foot and attributed this to the changed geometry of the muscle

with respect to the recording electrodes. In those experiments, the foot

angle was varied over a 40 degree range. However, our experiments are

done under isometric conditions with less than 5 degrees of variation in foot

angle and the change in muscle geometry is considerably less. Therefore,

although within the constraints of human experimentation we cannot be com-
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pletely sure of having excluded stimulus or measurement artifacts, the results

........ *_-, _gh_ consider the existence as a significant mechanism ofI[].UL_LL._ L,J.J._L, we _. .....

direct neural inhibition of the my.neural junction, a phenomenom found, to

date, only in invertabrates [21, 22, 23].
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27. A FormalModel for Arm Motion ,.,.,rl"rin(x,,,bT rget_._ _Approach

1
J. W. Aldrich, J. Lyman, and H. Stassen

University of California at Los Angeles

I° INTRODUCTION

One of the critical problems in the control of remote manipulators and

prostheses is the ability of the human operator to control a multiple degree of

freedom device effectively with a minimum number of controllers. Freedy

et al. (1967) state that for more than 3 degrees of freedom, effective control

by using one controller axis for each degree of freedom becomes excessively

difficult. A study of the fine structure of limb outputs in a multiple degree-of-

freedom task was undertaken with the following goals:

1. Analysis of actual arm motion in a given multiple degree-of-
freedom task.

2. Development of a formal model for motion about each degree of

freedom in a multiple degree-of-freedom voluntary task.

II. BACKGROUND

Study of voluntary motion is not new. Researchers have been attempting

to describe voluntary motion in the human arm at least since 1898 (Woodsworth,

1898). Early research concentrated on the trajectory of the finger moving a

stylus over a gridded conducting surface (Peters and Wenborne, 1936) or

in moving some sort of kymograph (Barnes, 1938; Brown and Slater-Hammel,

1949). The results showed motions of the type shown in Figure 1. Experimen-

tal conditions and procedure remained fairly constant: The subject, starting

from a fixed initial condition, moved a stylus to a fixed final point as rapidly

as possible upon introduction of an aural or visual stimulus. Individual

trajectories were recorded, but analysis consisted mainly of determining

gross movement reaction time and maximum and average speeds of move-

ments, usually a function of distance moved or of target size. Virtually no

attempt was made to analyze the fine structure of the movements or to relate

1 Currently with the Technological Institute of Delft, the Netherlands.
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Figure I. Typical Time Profile for Position during Voluntary

Motion

them to neuromuscular events, since patterns and structure of neuromuscular

events during voluntary motion were until very recently only vaguely identified.

An attempt at determining the fine structure of voluntary motion was

made by Taylor and Birmingham (1949). In this experiment, the authors

connected a potentiometer and an accelerometer to a control stick and had the

subject track step functions on a pointer display. Typical curves are shown

in Figure 2.

/ /k_
a. Position b. Rate

c. Acceleration d. Atypical Pattern

(Acceleration)

Less than I% of Data

Figure 2. Smoothed Representation of Subject Response to a

Step Displacement (Taylor and Birmingham, 1948)
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Unfortunately, these curves were smoothed, so fine structure was obscured.

The results showed the triangular nature of the velocity profile (Figure 2) and

the biphasic form of the acceleration profile. Taking into account naturai

smoothing due to controller inertia, the observed profiles could be elicited by

a model whose primary characteristic is an optimum on-off control system

(Gibson, 1963). Since acceleration is constant in such a system, the resulting
motion is ballistic in nature. Unfortunately, the absence of constant acceler-

ation profiles in the smoothed data convinced Taylor and Birmingham that

ballistic motion, as opposed to continuously controlled motion, did not occur.

This led them to a paradox when motion times were found to be comparable
with reaction times.

Later experimentation (Smith, 1962) showed positive correlation between

the postural reflex and on-off control and also between voluntary movement

against a load and on-off control. Subjects were required to position a pointer

by sliding it to one of a possible number of locations along a track. Spring

constant, inertia and coefficient of friction were varied from trial to trial.

The characteristics of the resulting motion are shown in Figure 3a. They
show clearly that at least part of voluntary motion in the human arm can be
modeled as a ballistic motion.

Detailed description o_ voluntary motion progressed further in the work

of McWilliam (1965). He observed velocity and position of the fingertip and

of various joint rotations as a function of time as the subject moved a pencil

across a sheet of paper. Results for rapid and slow movements are shown

in Figure 3b and 3c. Again it is seen that the velocity profile for "rapid

movement" is triangular in nature. At time t 1 (Figure 3b) a significant de-

parture from the triangular profile occurs. The "slow movement" velocity

profile shows slopes similar to those of "fast movement," but the "triangle"
is truncated. This is comparable to a position error dead zone between the

switching points. Motion for this system takes longer, since it is rate-limited.

Figure 2d is a curve from Taylor and Birmingham (1949) which they label as

"Atypical Patterns Found in Less than 1% of the Data." This type of accelera-

tion can result in a velocity profile of the type shown in Figure 3c. Important

results of McWilliam's study for modeling are:

1. Both peak velocity and total time vary with the distance moved, but

the waveforms keep the same general shape.

2. Movement about different joints shows the same general picture,

although differences in rapidity of movement do occur.

583



,

,

When a subject moves more and more slowly, there comes a point

where the velocity waveform '%teaks" and takes a form similar to

Figure 3c.

In complex movements, the motion of the hand itself shows the

waveforms of Figure 3.

a.

J--
"rIME

IIeavy Inertia being Moved by Arm Following a Step Command

(Smith, 1962)

b. "Fast" Velocity Profile (McWil]iam, 1965)

F \
I"IME

c. "Slow" Velocity Profile (McWilliam, 1965)

Figure 3. Characteristic Responses for Voluntary Motion
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III. PROPOSED MODEL FOR VOLUNTARY MOTION

With the above data, an analysis was undertaken to determine the form

of a model for arm _,_,v.._+_-.-,,t,,_g__........ vnhmtarv_ motion. From the experimental

data the following points are apparent:

. For a given degree of freedom, motion is basically ballistic in nature,

which implies some sort of on-off control mechanism, since for

rapid motion the acceleration controller operates full on positive for

1/2 cycle, and full on negative for the remaining 1/2 cycle, and for

slow motion the controller is still on-off, but for a decreased por-

tion of the cycle.

. At some point in the terminal portion of motion, ballistic motion is

terminated, inhibited, or overridden by some other form of control

(this corresponds to t I in Figure 3b).

1 The pattern holds for each of the degrees of freedom of the arm

when moved separately; when multiple degree-of-freedom motions

are elicited, the hand itself makes an on-off type of motion switching

to another control policy when the hand approaches the target.

The model form based on these observations is shown in Figure 4. The

response of the system shown in Figure 4a to a step is a time optimal tra-

jectory with biphasic acceleration and triangular velocity profiles (Freedy

et al., 1967). Since voluntary motion involves switching between on-off and

proportional control, the optimal on-off controller of Figure 4a was combined

with proportional control in a dual mode system (Gibson, 1963). If E2 is
less than _, then the inner loop transfer function is of second order, a form

determined experimentally by McRuer et al. (1967), Adams (1965), and McRuer

et al. (1965) 2. Interaction with visual feedback is represented by Gv(s ) and

the quantity _" , which is a function of target size. Time delay is represented

by TR , which includes both reaction time and neuromuscular transit time.

The system operates as follows. When motion is desired, a step

representing change from present to desired position appears at the input.

An optimum on-off response is generated and continues until the inner loop
/%

error, c2 , falls to _ . The quantity c , which is a function of target
size, represents the position at which the system changes state from on-off

to proportional control to finish the motion.

2 Even though the model of McRuer et al. (1965) represents a random input

describing function model, its form is sufficiently close to the others to

demand inclusion.
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(b)

(a) System with Optimal Step Response

(Freedy, 1967) and (b) Model Form
for One Axis of Rotation

ACTUAL

STATE _o

The following questions may be asked:

4
£, Is finis model consistent from one axis of rotation to another, i.e.,

is its form applicable to both wrist flexion and humeral rotation

during a complex task ?

2. What is the timing relationship between movements about different

axes of rotation during a complex movement ?
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3. What is the effect of target size and displacement between initial point

and target on the model ?

4. What are parameter values, and how do they change as a function of

target size and distance ?

5. What is the nature of the proportional controller ?

This paper answers questions 1 through 3 via a series of experiments

which would verify the form of the model. Question 4 will be attempted as a

follow-up study. Question 5 is certainly the most difficult to answer because

it involves higher CNS structure and therefore a great deal of complexity. It

must be realized also that the quantity _ , the input step, and other para-

meters in the model which can vary as a function of distance and target size

are determined by activity of supraspiral areas of the CNS. Studies of the

form of this element involve the entire human operator and are abundant in

the literature (e. g., IBekey, 1962; Vossius, 1963; Young and Stark, 1965;
McRuer et al., 1965). The position occupied by the model presented in this

paper in the scheme of Vossius (1963) is shown in Figure 5 by dotted lines.

INPUT

SIGNAL

F--

I
I

EMPHASIS

J THt5 PAPER

L_

PASSIvE TRANSFER CHANNEL

ERROR

ANAI.Y'_I_

SHORT TERM I _/"_

PREDtCTION J-_2

J

_t SJkMPLIN_

OF:

I E'_TREMIT'Y
I M_USCuLATUKE

1

\\
PATTE, RN I \\

I COe*ECT,ON _ t

t ILl OUTPUT 0_"

i
!

J I

; i

Figure 5. Vossius' Model for the Human Operator (Vossius, 1965)
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IV. EXPERIMENTAL PLAN

An experiment was planned to verify questions 1 through 3 to determine:

1. Whether the model form is consistent for all axes of rotation involved

in a given task.

2. Time relationships between onset of motion for each axis of rotation

involved in the task.

3. Effect of target size and displacement on model form.

It was realized at the outset that the form of velocity and position pro-

files observed represented individual ensemble members of a stochastic

process. Furthermore, the discussion of the first section of this paper de-

manded that whatever analysis be performed should preserve the fine structure

observed in each replication of the experiment. For these reasons, classical

experimental design could not be used to explicitly define the experimental

procedures. Rather, what was required was empirical development of experi-

mental techniques and measurements by a succession of experiments, with

the final experiment being a controlled design incorporating controls determined

by prior experiment to demonstrate model form.

Experimentation consisted of three phases. In phase one, a pilot study

was run using one subject to determine if results would be fruitful and to de-

termine the feasibility of a preliminary experimental plan.

After the results of Experiment I showed that a relatively fixed pattern

for voluntary motion appeared to exist, two additional experiments were

planned. The second experiment had as its aim a more detailed look into

voluntary motion to verify that the phenomena observed in the pilot study were

predictable, and to develop experimental procedures which would yield more

quantitative measures of the model form. With the results of the second ex-

periment, a final experiment was planned to predict model output.

Experimental Task

The task used in the experiments is based on a set of tasks devised by

Fitts (Fitts, 1954; Fitts and Peterson, 1964) to determine the channel capacity

of the human motor system. These tasks involve moving a stylus from a

fixed starting point to one of several targets. Experiment IV of Flits and

Peterson (1964) was used as a baseline experiment for the present study.

588



In this experiment, a well-trained subject is asked to move the stylus as

rapidly as possible from the starting point to the target at presentation of a

visual stimulus. He is instructed not to miss the target, and targets of varying

widths and fixed lengths are employed. They are placed at various distances

from the starting point.

Since it is desired to study the effect of variation of target size on motion

about individual axes of rotation, the basic experiment was modified in the

following manner. Fitts (1954) found that movement time was independent of

distance traversed (if the distance is less than 16 inches) when the subject is

moving as rapidly as possible. Therefore, distance from starting point to

target was fixed at 12 inches. It was necessary that the spatial location of the

target be specified in both height and width so that motions about different

rotation axes would be comparable.

Basic Experiment

The experiment performed was intended to determine angular excursion

of arm and shoulder joints with time over a fixed distance as a function of

target size. Two things were determined by this experiment:

1. The characteristic patterns of motion about each rotation axis of the
motion.

2. Interrelationships in angular motion between individual axes over

time.

The subject moved as rapidly as possible without missing after stimulus

presentation. In form, the experiment involved voluntary motion between

two fixed points in response to a visual stimulus.

Experimental Apparatus

A block diagram of the experimental apparatus is shown in Figure 6.

The apparatus consists of a target board with selectable target sizes at a

fixed distance from the initial point, an experimental timing and control box,

a seven degree-of-freedom electrogoniometer, and recording apparatus

consisting of an analog buffer unit, strip chart recorder, and an IBM 1800

process control computer for recording data.
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Figure 6. Experimental _pparatus

Electrogoniometer

The electrogoniometer was a seven degree-of-freedom Rancho Electric

Arm, modified by installation of potentiometers in place of the motors on

orthesis. The Rancho Electric Arm is described in Karchak and Allen (1968).

It allows shoulder adduction and abduction, shoulder flexion and extension,

humeral rotation, elbow :flexion and extension, wrist pronation and supination,

wrist flexion and extension, and scapulo-clavicular adduction and abduction.

Experiment I

For this study, the targets were located in a vertical plane and the

starting point in a horizontal plane so that motion involving elbow and shoulder
flexion/extension, wrist rotation and wrist flexion/extension could be recorded.

One subject was used.

Results suggested the following conclusions (see Figure 7). The total

time for operation is divided as indicated by Figure 8.

1. The onset times for motion about individual axes of rotation are

independent of the target size.
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The onset times for different axes of rotation are different; this

means a sequential start of the different power units.

Total response time as well as the time for proportional operation

are highly sensitive to the target size; the time for the ballistic

motion is somewhat dependent on the target size.

The target size where visual feedback becomes important is some-
where between 5 and 10 mm in diameter.

Experiment II

The target was moved from the horizontal to the vertical plane, but

wrist flexion was artificially induced by forcing approximately 30 degrees of

flexion at the starting point. Computer programs were generated to compute

a first order approximation to angular velocity about each axis of rotation;

tL- t;_i
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and the resulting velocity profiles with time were used for analysis.
one subject was used.

Results

Again,

Normalized mean angular velocities are shown in Figures 9 through 12.

A modified averaging procedure was used. Instead of averaging directly

across time, the means were computed by shifting each profile until onset

times for all profiles coincided. Without such a shift the data will be smoothed

such that the time until maximum velocity and the time of shift from on-off

to proportional control will be obscured. After computation, the mean profiles

were plotted such that onset of motion occurred at mean onset time for each.

Mean position profiles are shown in Figures 13 through 16.

The first result of this experiment can be seen immediately in Figures

13 through 16. Upon completion of an experimental run, the subject was in-

structed to return to his initial position. Marks were placed on the goniometer

to indicate this position, but the position profiles indicate that the subject did

not, or could not, return to exactly the desired initial conditions between runs.

Figures 17 through 21 represent analysis of mean times for various

portions of the motion. Analysis of these curves is as follows.

Onset Time

Sequential initiation of motion is seen in Figure 17. It shows that in all

cases, shoulder rotation was initiated before the other three axes of rotation.

The policy of motion initiation changes among the other three axes, although

variation about each axis amounted to 20 percent ( 1(7 ). Figure 17 repre-

sents the actual situation in each case, although there is some variation in

time between initiation about successive axes of rotation. For example, for

the 15 mm diameter target the ordering of initiation of motion was shoulder

flexion, wrist flexion, elbow flexion, and shoulder rotation for every experi-

mental replication. The cause of the shifting of policy is unknown, but it is

believed to be due to habituation to goniometer response by the subject.
Habituation of this type could also account for reduction in mean onset time

as the target size decreases. Even with these variations, onset times for all

axes of rotation in the motion are clearly not related to target size by an ex-

ponential function, and they therefore do not contribute to the additional time

for motion when target size becomes small. The difference in onset sequences

between Experiments I and II is due to the change of target plane from vertical
to horizontal.
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Motion Time

Mean movement times are shown in Figure 18. With the exception of

results for the target size of 50 mm diameter, the curves can be matched to

exponential functions of the type noted by Fitts and Peterson (1964). Shoulder

flexion movement time is seen to be more independent of target size than the
others.

Time to Maximum Velocity

These curves, shown in Figure 19, represent the time taken for the

angular velocity to reach its maximum. If an output velocity waveform of the

type postulated for voluntary motion occurs, then this time is a measure of

the slope of the velocity curve for the on-off control portion of the motion.

The family of curves in Figure 19 implies that ballistic motion in the arm is

not a function of target size but is different for each axis of rotation, with

shoulder flexion having the largest percent of time and therefore the lowest

slope for ballistic motion.

Time of Proportional Control

Switching of the system from on-off to proportional control was seen to

be independent of target size, but Figure 20 shows that except for shoulder

flexion, the time spent in proportional control is directly correlated to target

size, and except for the 50 mm diameter target case, they can beimatched to

a family of exponential functions. Shoulder flexion, on the other hand, seems

to be independent of target size except at 2 mm. Therefore its motion appears

to be largely ballistic in nature.

Anomalous Profiles

Policy shift in onset of motion and changes of slope for on-off control

in the 15 to 5 mm diameter region, discrepancy of 50 mm data, and the unique

behavior of shoulder flexion led to a replication-by-replication search of the

data. Ongoing habituation to goniometer manipulation was considered as

partly responsible, but the regularity of shoulder flexion responses and the

regularity of occurrence of distortions in the mean velocity profiles suggested

that an underlying mechanism might be responsible. Figure 21 presents

the percent of anomalous runs for each axis as a function of target size. An

anomalous run is defined as a run whose velocity profile is of the type seen

in Figure 3c. For the 50 mm diameter target, there exist many more anoma-

lous runs than for other target sizes except for the 2 mm target. Since the
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the 50 mm target was presented first, the appearance of excess runs is believed

to represent adaptation by the subject to the experiment. As target size is

reduced, anomalous runs appear in different axes of rotation. The percentages

are small, but this type of motion lengthens motion time enough to affect

motion time without affecting time to the proportional mode.

Shoulder flexion profiles show a consistent mixing of anomalous and

normal profiles, but in each case proportional control time is small. This

indicates that shoulder flexion may have a different non-linear switching
characteristic than the other axes of rotation.

Conclusions

Model Form

1 The model form of Figure 4 is verified for shoulder rotation, elbow

flexion, and wrist flexion. Reaction time in each has been replaced

with onset time, which is independent of target size. The non-

linear characteristic is also independent of target size.

. For shoulder flexion-extension, the non-linear characteristic should

be altered such that it has a dead band. This is not entirely accurate,

but it represents a compromise between a normal function with low

gain and an anomalous function with a small dead band. A shoulder

flexion model is shown in Figure 22. The quantity _ will be less

for shoulder flexion than for other axes, and time in proportional
control will be smaller.

. The coupled motion of all axes is dependent upon a sequential initia-

tion of motion about each axis of rotation. The sequence is not

consistent across all target sizes, but shoulder flexion is initiated
first.

Experimental Design

The following difficulties exist with the experimental design:

1. Practice effects for the task and for the goniometer tend to obscure

data and may affect the policy for onset sequence in the motion.

2. Initial condition variation makes amplitude analysis uncertain.
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Motion Time

Mean movement times are shown in Figure 18. With the exception of
results for the target size of 50 mm diameter, the curves can be matched to

exponential functions of the type noted by Fitts and Peterson (1964). Shoulder

flexion movement time is seen to be more independent of target size than the
others.

Time to Maximum Velocity

These curves, shown in Figure 19, represent the time taken for the

angular velocity to reach its maximum. If an output velocity waveform of the

type postulated for voluntary motion occurs, then this time is a measure of

the slope of the velocity curve for the on-off control portion of the motion.

The family of curves in Figure 19 implies that ballistic motion in the arm is

not a function of target size but is different for each axis of rotation, with

shoulder flexion having the largest percent of time and therefore the lowest
slope for ballistic motion.

Time of Proportional Control

Switching of the system from on-off to proportional control was seen to

be independent of target size, but Figure 20 shows that except for shoulder

flexion, the time spent in proportional control is directly correlated to target

size, and except for the 50 mm diameter target case, they can be matched to

a family of exponential functions. Shoulder flexion, on the other hand, seems

to be independent of target size except at 2 mm. Therefore its motion appears
to be largely ballistic in nature.

Anomalous Profiles

Policy shift in onset of motion and changes of slope for on-off control

in the 15 to 5 mm diameter region, discrepancy of 50 mm data, and the unique

behavior of shoulder flexion led to a replication-by-replication search of the

data. Ongoing habituation to goniometer manipulation was considered as

partly responsible, but the regularity of shoulder flexion responses and the

regularity of occurrence of distortions in the mean velocity profiles suggested

that an underlying mechanism might be responsible. Figure 21 presents

the percent of anomalous runs for each axis as a function of target size. An

anomalous run is defined as a run whose velocity profile is of the type seen

in Figure 3c. For the 50 mm diameter target, there exist many more anoma-

lous runs than for other target sizes except for the 2 mm target. Since the
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28. Contributions of Roll andYaw MotionCues in Manual Control

L R. v ....... a p B ..'.,.a_lo
• | UUII_ _lllU , , I,JlllOUUa_

Massachusetts Institute of Technology

ABSTRACT

Previous communications concerning the effects of roll

motion cues on pilot characteristics emphasized the increase

in low frequency gain and the phase lead contributed at high-

er frequencies. To determine the relative contributions of

semicircular canal and otolith responses, experiments were

performed in yaw and roll control of a K/s 2 vehicle on a

moving base rotation simulator. Comparison of human opera-

tor describing functions shows that rotation with respect

to the g vector (roll) leads to higher gain than rotation in

a horizontal plane, although no significant difference in

phase lag appears.
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VERTICAL

HORIZONTAL ROTATION AXIS

F' = RMS centripetal force
c

F' = RMS tangential accelerative force
a

F' = RMS shear component of gravity
g

F_ = R --
.0005 g for R = 2/3 ft.
.0015 g for R 2 ft.

F' = R =
a 1017 g for R = 2/3 ft.051 g for R 2 ft.

--1/2
F' _ 82 N= g ( ) = 0. 139 g
g

Components of Specific Force at the Otolith
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29. Four-Axis Compensatory Systems with Separated

Displays and Controls*

William H. Levisonand JeromeI. Elkind

Bolt Beranek and Newman Inc.

ABSTRACT

A current experimental study of multivariable manual control systems
is reviewed. Results are presented from a complementary set of

single-axis and multl-axis experiments. Single-axis data show that

mean-squared error scores, controller describing functions, and ob-
servation noise spectra vary in a predictable way with viewing con-

ditions. Multi-axls tracking tasks in which visual scanning is pro-
hibited indicate the presence of a significant amount of interference

between the tasks. The scanning behavior exhibited by the subjects
when tracking four axes simultaneously corresponds to the observa-

tional qualities of the various displays as revealed through the
single-axis experiments.

I. INTRODUCTION

The experimental results obtained from a current theoretical

and experimental study of manual control are summarized in this

paper. The basic objective of this study is to investigate human

control and scanning behavior in multlvarlable control situations
and to develop models for the controller in these situations.

Special emphasis has been placed on the study of task interference
and pilot workload. This experimental program has been fully docu-
mented in Reference i.

In previous studies of two-axis control systems we were able
to positively identify interference between tasks only when the two

axes contained differing vehicle dynamics (Ref. 2). (We define
"interference" to exist whenever a single-axls performance measure

observed on a given ax_s differs significantly from the same measure
obtained on that axis when simultaneous tracking of two or more axes
is required.) Interference in this s_tuat_on was attributed essen-

tially to a central-processlng source. When integrated controls and

This work was supported by the National Aeronautics and Space
Administration under Contract No. NAS2-3080.
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The human controller was presented with four compensatory

tracking displays, each of which contained a stationary reference

bar and a moving bar to indicate system error. The error bars

were controlled by compatible movements of two 2-axis control
sticks. The four axes were linearly independent, and simultaneous

control was required for various combinations of 1,2,3, and 4 axes

during the course of the experimental program. Figure i shows a

linear flow diagram of one of the four axes. Throughout this ex-

perimental program we used a state-regulation configuration, as

opposed to the command-input configuration previously used by us
and other workers in order to provide compatability with recent

theoretical developments (Ref. 6). The forcing function was in-

Jected in parallel with the pilot's control action and thus appeared

as a disturbance on vehicle velocity.

Oscilloscopic displays were located at the four corners of an

imaginary square as shown in Figure 2a. The particular configura-

tion shown was adopted after a preliminary investigation had re-

vealed that peripheral tracking performance was aided by the ability

of the subject to extrapolate a zero reference from his fixation

point to the peripheral display. This was true apparently because

perception of the stationary baseline presented on the peripheral

display faded after a few seconds. In order to provide similar

viewing conditions for each fixation point, the error indicators of

the upper left (UL) and lower right (LR) displays were presented

as vertical bars which moved in the horizontal dimension, and the

lower left (LL) and upper right (UR) were horizontal bars which
moved in the vertical dimension. This arrangement allowed the

subject to extrapolate a zero reference only to the peripheral dis-

play located in the nearest clockwise position to his fixation

point, no matter which of the four displays was designated as the

fixation point. Examples of horizontal and vertical reference

extrapolation are shown in Figures 2b and 2c, respectively.

The hand controls were modified versions of the Measurement

Systems Inc. Model 435 force-sensitive control. The control was

essentially spring restrained, omnidirectional, and without per-

ceivable friction or backlash. The transducer of each control

provided two independent electrical outputs, one proportional to
the horizontal and the other proportional to the vertical component

v_ _=uu±u_. an order to provide a high degree of control-display

compatibility, each display was controlled by a component of stick

movement along the same axis as the motion of the error indicator.
The sticks were allowed to move freely in both axes in all experi-

ments; the error indicators in the inactive axes were clamped

electronically at zero displacement.
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displays were used with similar control conditions on both axes,
the subjects were able to track each of the two axes nearly as well
together as separately.

A degradation in total performance score was seen when the

subject tracked two homogeneous axes with the controls and displays
spatially separated (Refs. 3,4). The subjects were required to

scan between the displays in these experiments. The performance

decrement was attributed to the necessity for the subject to track

one of the displays peripherally at any instant of time. (Single-
axis experiments showed that peripheral tracking performance was
significantly poorer than foveal performance.) Comparison of the

two-axis controller behavior with the output of a simple model in-
dicated that the subject could apply the appropriate foveal and

peripheral strategies simultaneously without loss of performance
due to interference between them. We therefore concluded that

central-processing sources of interference were not present in the
two-axis scanning situation.

One important experiment that we fa_]_d to De_f_ was _o re-

quire the subject to track a foveal and a peripheral display simul-
taneously while maintaining fixation on a single display. Such an

experiment would have allowed us to investigate directly the exis-
tence of interference between two nonintegrated axes without the

analytical complications introduced by visual scanning. One objec-
tive of the experimental program described in this paper was to
remedy this gap in our knowledge.

II. EXPERIMENTAL PROCEDURE

From the outset of this program we have attempted to adapt the

optimal-theoretic framework of Baron and Kleinman (Refs. 5,6) to
the multivariable control situation investigated in this study. An
extensive set of single-axis tracking experiments was performed in

order to provide the complete set of foveal,and peripheral observa-
tion noise measures required by this model. In order to verify
the model's predictions, two variations of a four-axis manual track-

ing task were performed. In addition, a set of two-, three-, and

four-axis experiments in which the subjects were required to main-
tain fixation of a single display allowed us to explore the nature
of task interference.

The representation of controller remnant by an equivalent observa-

tion noise process is discussed in a companion paper (Ref. 7).

619



F ....

I
I
I
I

r I
I
I
I
I
I
Ln_

X I

rx

)Human

Controller

1
I
I
I
I
I
I

H u f 1

I
I
I

,,,,,.,.I

qll

-1

i

V
_'X

FIG.1 LINEAR
MANUAL

System
movemen
The con
observa
shown a
describ

The veh
adopt t
feedbac

FLOW DIAGRAM OF A SINGLE-AXIS COMPENSATORY
CONTROL SYSTEM

forcing function, system error, and control
t are represented by i,x, and u, respectively.
troller remnant is represented by an equivalent
tion noise rx, and the "perceived error" is
s x' H and V represent the human controller's
ing function and the vehicle dynamics.

icle output is shown here as -x so that we may
he standard practice of indicating negative
k.

620



T(I')
l

16°

F--

L_ 16o
I--

a. Four-axis Display Configuration

ZERO

EXTRAPOLATED
REFERENCE

b. Horizontal Reference Extrapolation

(,"l)
I
I

EXTRAPOLATED

REFERENCE

FIXATION

c. Vertical Reference Extrapolation

FIG.2 DISPLAY CONFIGURATION USED IN THE EXPERIMENTS
Dimensions Shown in Degrees of Visual Arc

621



The control dynamics were 1/s in all axes for all experimental
conditions. The input disturbances were pseudo-Gaussian noise pro-
cesses generated by summing 13 sinusoids whose frequency spacings
and amplitudes were adjusted to simulate a first-order process
having a break frequency at 2 rad/sec. The initial phase shifts
associated with each component of each forcing function were se-
lected from a random process in order to assure that there would be
no apparent linear correlations among the forcing functions.

The input, error, and control signals were recorded in digital
format for post-experlmental analysis. Subject eye movements were
obtained by electro-oculographic techniques and were analyzed to
determine visual scanning behavior. Human controller describing
functions and equivalent observation noise spectra were obtained
using techniques described in Ref. 1. In addition, mean-squared
error scores were computed. Measurements were obtained over the
mlddle 3-1/2 minutes of a 4-mlnute trial.

Four instrument-rated pilots served as subjects. The subjects
were given a consistent set of instructions throughout the entire
experimental program. They were told to minimize the mean-squared
system error when a slngle axis was tracked. When two or more axes
were tracked, they were instructed to minimize the total performance
measure (given as the sum of the component MSE scores). They were
not told how to apportion their total score among the axes. The
subjects were given knowledge of their performance after each train-
ing trial, and they were trained to an apparently asymptotic level
of performance on each of the conditions investigated.

III. EXPERIMENTALRESULTS

Single-Axis Tracking Performance

A complete set of single-axis measures was obtained. Each sub-
ject tracked each of the four displays for each of the four possible
fixation points to make a total of sixteen 1-axls trials. The per-

formance measures presented below have been obtained by averaging
across subjects and across trials corresponding to the same viewing
conditions.

The effect of viewing conditions on mean-squared error scores
_ abn_^,_ _ *_ e top row of m_^ m......................... i_u_= I. im_ 1"amK ordering of the tasks,

from easiest to most difficult, was: foveal, 16 ° peripheral with
reference extrapolation, 16 ° peripheral without reference extrapola-

tion, and 22 ° peripheral. Analysis of variance tests showed that

the increase in score from each viewing condition to the next was
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significant at the 0.05 level or lower. Peripheral performance is
thus shown to be significantly aided by allowing the subject to
extrapolate a zero reference from his fixation point.

The effect of depriving the subject of the ability to extrap-
olate a zero reference resulted in a significantly nonzero mean
error over the measurement interval. The second row of Table 1
shows that the variational component of the error waveform accounted
for nearly the entire MS error score when the display was viewed
foveally or peripherally with reference extrapolation. On the other
hand, slightly over 20% of the MS error score arose from an average
error offset when the viewing conditions were least favorable.
Thus, when reference extrapolation was not possible, the subject
had to track the error indicator about his best estimate of the
zero position which, on the average, did not coincide with the true
null point.

TABLE 1

EFFECTOF VIEWING CONDITIONSON MS
ERRORSCORESANDFRACTIONALREMNANTERROR

Mode of Viewing
16° Periph 16° Periph 22° Periph

Measure Foveal Ref Ext No Ref Ext No Ref Ext

MS Error (deg 2)

Variance/MSE

Fract. Remnant

.13

.99

.24

.43

.97

.50

1.0

.86

.70

1.6

.78

.77

Average of 4 subjects, 4 trials/subject.

Fractional remnant error -- defined as the fraction of the error
variance not linearly related to the forcing function -- is _own in
the bottom row of Table i. This measure showed the same trend as
the MS error score in that both increased as the viewing conditions
were made less favorable. An increase in fractional remnant implies,
in terms of our equivalent observation noise model for controller
remnant, that observation noise is of increasing importance as the
viewing conditions are degraded.
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Normalized observation noise spectra are shown in Figure 3.
These curves have been obtained by reflecting the controller remnant
spectrum to an equivalent noise injected on system error and by
normalizing with respect to error variance. Although there were
no consistent differences among the four average spectra at high
frequencies, the low-frequency normalized observation noise in-
creased appreciably as viewing proceeded from foveal to peripheral
with reference extension to peripheral without reference extension.
There were no appreciable differences between the normalized noise
processes associated with the two peripheral viewing conditions that
did not permit reference extrapolation. If we were to plot the
absolute (i.e., unnormalized) observation noise spectra, however,
the differences would be accentuated and we would see that the
relationship of observation noise to viewing conditions was con-
sistent with the relationship of the fractional remnant error to
viewing conditions.

Figure 4 shows the effect of viewing conditions on the average
human controller describing function. The primary difference among
this set of describing functions Is the higher gain at low and mid-
frequencies accompanying foveal viewinG. The approximate gain-
crossover frequencles for foveal and peripheral viewing were 5 and
4 rad/sec, respectively. In addition, a somewhat larger phase lag
was observed at high frequencies for peripheral viewing, and the
three peripheral amplitude-ratlo curves appeared to exhibit a
resonance peak around 16 rad/sec, whereas the peak for foveal track-
ing was closer to 22 rad/sec.

In order to provide an overall-performance measure that will
be useful for interpreting the multi-axls results discussed later
In this paper, we show the average total performance score In
Table 2. This measure is defined here as the sum of the four
scores (one foveal and three peripheral) corresponding to fixation
of a single display. The largest total score on the average was
achieved from fixation of the lower left display. Thls score was
about 1.6 times as great as the lowest score (corresponding to
fixation of the upper left display). Left-right performance dif-
ferences were on the average only about 5 percent and were not
statistically significant. On the other hand, the average score
corresponding to fixation of the lower displays was about 1.4 times
the average score when fixation was directed at the upper displays.
An analysis of variance showed this difference to be significant
_ _i_ O.uD level.

Analysis of the total performance measure thus reveals that
significantly better visual information is obtained overall when
the upper displays are fixated than when the lower displays are
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fixated. On this basis we would predict that the subject would

tend to fixate the upper displays more than the lower displays

when tracking the four displays simultaneously, other comditions
being equal.

TABLE 2

EFFECT OF FIXATION POINT ON TOTAL MEAN-SQUARED ERROR SCORE

Display

Fixated

Up

Down

Average

Left

2.6

3.9

3.2

Display Fixated

Right

2.7

3.5

3.1

Average

2.6

3.7

3.2

2
MS error scores in deg

one score per subject.

visual arc. Average of 4 subjects,

Multi-Axls Tracking Performance With No Visual Scanning

A set of experiments was performed to determine whether or not

multiple tasks performed in parallel mutually interfere when the

displays are separated, and to determine the nature of such inter-

ference as might exist. In order to isolate such interference from

the effects of visual scanning, the subjects were required to fixate

a single display while tracking two or more axes.

We first required the subjects to track two displays simulta-

neously: one foveally and one peripherally. This condition was

investigated partly to complement the set of two-axls experiments

performed in an earlier phase of this study (Ref. 3), and partly

to provide the most straightforward procedure for investigating

simple foveal-peripheral interference.

In order to provide a two-axls situation that was to a large

extent compatible with the two-dlsplay conditions investigated pre-

viously, only the configurations allowing peripheral extrapolation

of the zero reference were investigated. All such configurations

were investigated. Each display was fixated in turn by each subject,

and for each fixation point the subject was required to track (a)

the display fixated, (b) the peripheral display located in the

nearest clockwise position, and (c) the foveal and peripheral dis-

plays simultaneously.
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In order to reveal any fundamental differences that might
exist between interference on the foveal and peripheral tasks, it

was important that the subject assign equal importance to the two
tasks. The mean-squared input was therefore made larger for the
foveal task in an attempt to force the slngle-axis mean-squared

error to be approximately the same for both foveal and peripheral

tracking. Thus, if there were no interference or if the interfer-
ence were basically the same for both the foveal and peripheral

tasks, the two tasks would contribute equally to the total perfor-
mance score when the two axes were tracked simultaneously. It was

assumed that the subjects would learn to assign equal subjective

weightings to the two tasks in this hypothesized situation when

given sufficient training.

The mean-squared error scores shown in Table 3a indicate that
a substantial amount of interference was present. The ratio of the

2-axis total performance measure to the corresponding 1-axls measure
(identified in the table as the "error ratio") was about 1.7.
Interference on the foveal and peripheral axes differed slightly:

the peripheral score increased by about a factor of 2.0, whereas
the foveal score increased by a factor of about 1.6. We suspect

that the greater degradation in performance on the peripheral task
was due primarily to the fact that the peripheral task was the
easier task -- as indicated by the 1-axis MSE scores -- despite our

efforts to provide foveal and peripheral tasks of equal difficulty.

The 2-axis, 1-axis differences in MSE scores were significant at
the 0.001 level for the foveal, peripheral, and total-task measures.

A set of experiments were performed in which the subjects were

required to track simultaneously either three peripheral axes or all
four axes (one foveal, three peripheral) without visual scanning.

Corresponding sets of single-axis measures were obtained for com-

parison. Single-axls MS error scores are compared with the four-
axis scores in Table 3b.

There was substantial interference on each of the four axes.

The four-axis total performance measure was about 2.4 times the

single-axis total score. An appreciably smaller error ratio was
observed on the most difficult component task (22 ° peripheral

viewing) than was observed on the remaining axes. If one ascribes
the existence of task interference to a mechanism analogous to the

sharing of attention_ then we would conclude that the subject

"attended" preferentially to the task contributing the most to the
total performance measure. In terms of our instructions to the

subject, this would be the optimal strategy to adopt.
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TABLE 3

Effect of _T,,_h_ _e AY_

Tracked on Average Mean-Squared Error Scores

a. One Foveal and One Peripheral Task

Mode of Viewing Mean-Squared Error

1-axis I 2-axis

Error Ratio

_oveal .32 .50 I. 6

.23 .45 2.O

.55 .95

[6° periph, ref ext

?otal Score 1.7

b. One Foveal and Three Peripheral Tasks

Mode of Viewing Mean-Squared Error Error Ratio

1-axls 4-axls

Foveal .II .30 2.8

.27 1.0 3.8

.51 1.6 3.1

1.2 2.2 1.8

2.1 5.1

16 ° periph, ref ext

16° periph_ no ref ext

22 ° periph, no ref ext

Total Score 2.4

MS error scores in deg 2 visual arc

Average of 4 subjects
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Figure 5 shows that the 4-axis foveal normalized observation
noise spectrum and describing function were qualitatively similar
to the corresponding l-axis measures. The effect on the observa-
tion noise spectrum of adding additional axes of control was to
increase the overall level of the noise spectrum and to decrease

its break frequency somewhat. The describing function showed an
overall decrease in gain and a larger phase lag at high frequencies.

Similar 1-axis, 4-axis differences were seen for the observation

noise spectra and describing functions of the remaining axes.

Multi-axis Tracking Performance With Visual Scanning

Two variations of an experiment were performed in which the

subjects were required to track all four axes and were allowed to
choose their visual scanning pattern. The mean-squared inputs were

adjusted equally during the first phase in c_der to provide a con-
trol environment as homogeneous as possible. The MS input was

boosted by a factor of 4 on the lower left (LL) axis during the

second phase in an attempt to force the subjects to change their
scanning pattern. The subjects were instructed throughout this

experiment to minimize the total MSE score.

Fractional distributions of the mean-squared error are shown

in Figure 6 for the two experimental conditions. The fractional
distribution of error is defined as the MS error score on a given

axis divided by the sum of the scores on the four axes. Also shown
are the fractional distributions of fixation time (defined as the

cumulative time spent fixating a given axis divided by the total
run time).

The upper left cluster of entries in Figure 6 shows that the

total mean-squared error score was apportioned nearly equally among
the four axes when the inputs were homogeneous. The corresponding

scanning behavior, however, was far from homogeneous. Instead, the
subjects fixated the upper two displays as a group about 70% of the
time and devoted only 30% of the run time to fixating the lower dis-

plays. This scanning behavior corresponds to the up-down differences
in the total single-axis performance score that we showed earlier.

Thus, the subjects were apparently able to obtain better visual
information overall when fixating the upper displays, with the con-

sequence that these displays were preferred fixation points when

scanning was allowed.

Figure 6 shows that nonhomogeneous distribution of MS error
resulted from an increase in the lower-left MS input. The LL axis

contained 40% of the total error, with the remainder apportioned

nearly equally among the other three axes. Thus, we achieved our

630



-2C

O4_

e -4o

0 0 0

-6O

"o 20

3

-r-

-IOO

I

,,_. Z_ .,_. Z_ _. A

() O () O--- ) O

I

z_
A

.A.
0 0 0

I I

Z_ A

0 0
:6 o

A

a. Normalized Observation Noise Spectrum

i I I

00

Z_ A

I I I

o o
A A

b. Human Controller's Describing Function

nO

0

z_

0.5 I.o 2 5 io 20

FREQUENCY (rad/sec)

FIG.5 EFFECT OF NUMBER OF AXES TRACKED ON HUMAN

CONTROLLER PERFORMANCE: FOVEAL VIEWING

Subject JF, average of 2 trials

631



0

(--

0

E
0

'-r-

c-

O
0m
Wl-,,
t_

X
0_

u_

0

i.i

oo

N

0,,.I
o

0

i.-.-4

0,,,I

i--.i

c-

O
o_

ttJ

X
o_

I,

m

--!

0

¢-

QD

0

E
0

-r"

I

r'-

0

Z

or_

c;

0',,I

0

!.==

I.lul

O0

i.-=.1

a

0

i-.=1

o
0

r--I

0"

r--I

kO

I.-=i

u_

632



initial goal of making the LL axis the "most important" in terms of
its contribution to the total performance measure.

Increasing the relative importance of the LL axis had only a

negligible effect on the subjects' scanning behavior, however.
The fraction of time spent _^_°_v_*ing_......LT, 8xls rose from 0.12 for

homogeneous input conditions to only 0.15 for the nonhomogeneous
conditions. The failure of an appreciable change in scanning be-

havior to occur indicates that the presumed increase in importance

of the LL display was offset by a relative Improvement in the
viewing conditions associated with that axis.

In order to determine in a direct manner whether or not the

relative "vlewability" of a display would improve as the MS input

was increased, we examined the single-axis observation noise spectra

that were obtained during this phase of the experimental program.
If the noise/signal ratio associated with a given display were in-

dependent of signal amplitude, we would expect the absolute observa-
tion noise level to increase proportionally with the input variance.
Since we had increased the MS input by a factor of 4, we expected

that the observation noise would increase by 6 dB.

Figure 7 shows that the expected relation between the (un-

normalized) observation noise level and MS input held for fovea!

viewing. The observation noise spectra associated with the three
peripheral viewing conditions, on the other hand, showed little or

no consistent changes as a function of MS input. One conclusion
that we might draw from these results is that the primary effect

of placing a display in the periphery is to introduce an observa-
tional noise process that is relatively independent of the dis-

played signal strength. Thus, as the signal amplitude is increased
in the presence of a fixed noise process, the nolse/slgnal ratio

decreases and the subjects receive relatively better information
from the display.

Modellin_ the Multi-Axis Control and Scan Behavior

We are currently attempting to explain the multi-axis results
reported here within the framework of the optimal-theoretic model
of Baron and Kleinman (Ref. 6). It is clear from the experimental

data that interference effects were important when multiple axes
were tracked without the benefit of visual scanning. Preliminary

modelling attempts indicate, in addition, that interference was

This conclusion was supported by the subjective impressions of the

subjects. Without first informing them of the results of our eye-

movement measurements, we asked two of the subjects whether or not
they spent more time fixating the LL axis when the input was increased.

They replied that they did not, because (a) they could see the signal
on the LL display well enough peripherally when the input was in-

creased, and (b) when they did fixate the LL display, they had
difficulty estimating the signale on the remaining displays.
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important when scanning was allowed. It thus appears that the
model structure will have to be modified in order to include the

effects of interference if we are to achieve reliable predictions
of multl-task performance, at least when the tasks are independent.

At present we are investigating possible mechanisms by which
interference may be incorporated. We have tentatively adopted the
hypothesis that the primary effect of task interference is to in-

crease the levels of the effective observation noise processes

associated with a given task. The corresponding changes in con-
troller describing function and mean-squared error score are as-

sumed to follow from the necessity of the subject to re-optlmize

his strategy about the increased noise,levels in the manner pre-
dicted by the optimal-theoretic model. Note that the concept of
equivalent "observation noise" is a mathematical convenience that

we have adopted for representing and predicting controller remnant.
An increase in this noise process is open to a number of interpreta-

tions, one of which is that the controller's gains and/or time delay
have become more time-variable.

Preliminary tests using a simplified model structure indicate
that reasonable results can be obtained if we associate an increased

observation noise level with the sharing of "attention" or "capacity"
among the various component tasks. On this basis we have formulated

a measure of task workload that relates to the level of observation

noise that the pilot can tolerate and still maintain an "acceptable"
level of performance. Further model development and verification

will be necessary, however, before we arrive at reliable operatin_
models of task interference and pilot workload.

Alternatively, one might assume that the primary effect of task
interference is to affect some other parameter of controller per-

formance, such as controller gain or effective time delay. It is
far from clear, however, how a decrease in gain or an increase in
time delay would result in the increased remnant that was observed.
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30. ATheory for the HumanOperator'sRemnantin
Multiloop Display-ControlTasks *

W. F. Clement

Systems Technology, Inc.

ABE]TRACT

The theory comprises stochastic finite-dwell sampling among displays

with continuous control output based on intersample reconstruction theory.

Random sampling remnant theory introduces the notion of stability in the

mean-square sense in the operator's closed-loop tracking performance.

A related regression of adopted crossover frequency is shown to be

sensitive to the controller's sampling remnant. Foveal or parafoveal

finite dwell sampling and intersample control output reconstruction

suppress sampling remnant. A suppressed remnant will enable the operator

to adopt ratios of sampling-to-crossover frequency more nearly approaching

the lower bound predicted by the generalized sampling theorem. Two

examples illustrate the practical application of the theory to displays

for manual control. The influences of finite dwell and intersample recon-

struction suggest that sampling remnant may offer a powerful practical

measure for trading off the number and types of displays in a multiloop

control situation.

This research was accomplished under Contract N00014-68-C-0445 for the

Office of Naval Research as part of the Joint Army Navy Aircraft

Instrumentation Research (JANAIR) Program. Acknowledgement is due

Messrs. H. R. Jex and R. E. Magdaleno of STI for their helpful criticism.
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SUMMARY

When more than one compensatory tracking control task must be -^-_---_

"simultaneously" by a human operator, an aperiodic display scanning behavior

with virtually continuous control activity in each task has been observed

experimentally. In scanning among visual displays the operator directs

foveal attention to each display in turn for a finite fixation dwell time

interval. The fixation dwell interval has been hypothesized as a sampling

dwell interval during which the operator perceives a sample of the dis-

played signal. Then the interval between successive fixations on the same

display is analogous to a sampling interval. The theoretical analysis

reported here has been motivated by a desire to find a rational basis for

predicting and explaining adopted scanning behavior in a multidisplay-

control context. To the extent that a human operator may exhibit aperiodic

sampling behavior even in a single-loop control task, the analysis is

equally applicable.

_e stochastic analysis characterizes the scanning and sampling of

displayed error (for the purpose of control) in the frequency domain with

a quasi-linear describing function and sampling remnant. The purpose of

the analysis is to explore the influence of sampling remnant on performance

measures and minimization adjustments for the crossover model with sampled

error. A deliberate attempt has been made to build on and relate to that

foundation represented by the crossover model for compensatory control-display

systems to which the operator gives continuous foveal attention.

Stochastic error sampling is represented by a modulation process, viz.,

multiplication of continuous error by a sequence of finite-duration, unit-

amplitude pulses randomly distributed in time. It is the modulation process

which creates sampling remnant. The type and distribution of the modulating

pulses influence the character of sampling remnant. For example, classical

periodic impulsive sampling and synchronous periodic finite-dwell sampling

are useful limiting forms which produce a harmonically-related remnant.

In contrast, purely random impulsive sampling always produces a "white"

remnant uncorrelated with the input signal. Random finite-dwell sampling

produces a broadband remnant attenuated only at high frequencies. In gen-

eral, the power spectral density of broadband sampling remnant is propor-

tional to the triple product of the standard deviation in sampling interval,

the average inattention interval, and the mean-squared value of the signal

to be sampled. In compensatory control systems, broadband sampling remnant

can be represented by adding a noise of specified power spectral density to

the continuous error signal. Broadband sampling remnant power spectral

density will be proportional to mean-squared error and will have a more

significant effect on closed-loop mean-squared error than any harmonic

remnant which is relatively attenuated by the low-pass characteristics of
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the open loop. Yet the adoption of even imperfect intersample reconstruc-
tion can greatly attenuate broadband sampling remnant as well as harmonic
remnant.

Whereaswith continuous attention to error, the minima in relative

mean-squared error for low input bandwidth (_eei _ 0.8) occur at the

singular stability limit defined by normalized gain, _e_c = _/2,

the corresponding minima with sampled error occur at decreasing values of

crossover frequency as dwell fraction or sampling frequency decreases or as

sampling variability increases. Several examples are depicted in Fig. I

through 3 • Each figure illustrates the effect of one variable on

relative mean-squared error as follows:

Fig. No.

2

3

Var iab le

Dwell Fraction

Sampling Frequency

Sampling Interval

Variability

All other possible variables are constant in each figure to simplify inter-

pretation. Mean squared forcing function input, _, serves to normalize
the logarithmic mean-squared error ordinate in eac_ figure The effective

time delay in the crossover model isused to normalize the gain abscissa,

_^_c' the constant input bandwidth, _e_ = 0.4, and the mean sampling

f_equency, f-_e' where f is reciprocally related to the mean sampling

interval, vi_., _s = I/_s"

Notice how limitations on stability in the mean-squared sense with

decreasing sampling frequency, decreasing dwell fraction and increasing

variability should force the operator to adopt a lower gain crossover

frequency to minimize the mean-squared error. Notice also that sampling

frequency and dwell fraction have a profound influence whereas sampling

variability has a restricted influence on crossover frequency for minimum

mean-squared error.

Nn......A,la;+_l_,,_ _"_+_^-__,, in re_mant power by intersample reconstruction

has been assumed in these results. Under this assumption the effect of

sampling interval variability is particularly interesting in Fig. 5.

Variability is characterized by the normalized standard deviation in

sampling interval, gs/_s. Reduction in variability reduces relative mean-

squared error to a point of diminishing returns for Gs < 0.9 Ts, when the

phase margin of stability is between 30 and _9 degrees. Mean-squared

error is virtually insensitive to further reduction in variability even

when the phase margin is only 30 degrees. Thus there appears to be a
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"best" range of variability, vi___z.0 < % < 0._ Ts, which will minimize
residual remnant in the absence of intersample reconstruction. The signifi-

cance of this low range of variability is apparent in reducing both the

sensitivity of performance error to sampling variability and the require-

ment for intersample reconstruction by the human operator. Achievement

of this "best" range of variability would therefore appear to be a measure

of skill development in the human operator.

APPLICATION

Even if we assume sufficient skill development to assure achievement

of at least a low variability in scanning behavior, how can we use this

theory to predict adopted dwell fraction and sampling frequency in a multi-

loop control task for which allowable mean-squared error has b_en

established? Separate graphs such as those in Fig. I and 2 are difficult

to use in making predictions. Instead the theory, coupled with our

experience in applying the theory to multiloop tasks, has shown that a

unique frequency-based representation of the interactions is preferable to

help in predicting adopted average dwell intervals and sampling frequencies.

This representation is shown in Fig. 4A for a particular normalized cross-

over model gain, _cXe = _/4, which results in near-minimum mean-squared

error with adequate margin of stability for typical sampled multiloop

tasks. For the crossover model the gain is the crossover frequency and the

phase margin of stability is simply _/2 -ecTe . Two normalized scanning

parameters appear in Fig. 4A. One is the normalized average dwell interval

Td/Te. The other is the frequency ratio _/0_c(1-q). Theory shows that

random finite dwell sampling remnant power is inversely related to the

ratio of the crossover period to the average intersample interval,

Tc/Ts(1-_) , which is equivalent to the frequency ratio _s/_C(1-_). This

ratio therefore, supplants the sampling-to-bandwidth frequency ratio of the

generalized (impulsive periodic) sampling theorem as a determinant of the

relative closed-loop input-correlated (and uncorrelated) error power.

Figure 4A implies that the frequency ratio_s/_c(1-_) should be as high as

possible to reduce error. However, dwell fraction will place a practical

upper limit on this frequency ratio, because the sum of dwell fractions

for all fixations cannot physically exceed unity. We shall illustrate the

application of Fig. 4Awith some examples.

Example I

Typical values for effective time delay in pilot-vehicle multiloop

closures are in the range 0.2 < v < 0.5 sec. Since pilots have been
observed to dwell betwee_ 0. 5 ande1.0 sec on displays for flight control,

it is possible for I _Td/_e ! 2 or more. This establishes a range for one

of the normalized scanning parameters in Fig. 4A. Notice that in this

range of Td/_e, sampling remnant will at most triple relative mean-squared

error. If a pilot can maintain a dwell fraction _ _ 0.5 on each of two

distinct multiloop displays, each intersample fraction I-_ _ 0.5 also.
Then the frequency ratio_/_c = 2 will enable him to operate in all loop

closures involving these two displays with the ratio _/_c(I-_) _ 4.
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Figure 4A shows that there will be no need for crossover frequency regres-

sion caused by a stability limit in the mean-square sense under these

typical normalized scanning conditions; however, the relative mean-squared
error will be at most thrice that value which could be achieved if con-

tinuous attention to all displays were possible.

Since dwell fraction is actually an implicit variable not shown in

Fig. 4A, Fig. 4B shows explicitly how dwell fraction will vary as a

function of dwell interval and the frequency ratio _s/ah(1-_). We can use
Fig. 4B to determine the range of adopted sampling frequency corresponding

to the range of normalized dwell interval, I _Td/x _ 2, for our hypothesis

that the dwell fraction will be 0.5 on each of two _isplays.

If Td/Te = I, and _s/ah(1-_) = 4, the upper part of Fig. 4B shows that

the dwell fraction will be exactly 0.5 at the gain corresponding to the

singular stability limit, _cXe = _/2, denoted by a square symbol. There is
no phase margin of stability, therefore it is unlikely that a pilot would

adopt so short a dwell interval relative to effective time delay. Instead,

if Td/X e = 2, and _%/ah(1-q) = 4, the lower part of Fig. 4B shows that the

dwell fraction will be 0.5 for the normalized gain ecX e = _/4, denoted by
a circular symbol. Therefore, we may reasonably predict adoption of a

normalized gain ecVe = 3/4 with adequate phase margin (also 3/4 radians),

and a normalized dwell interval Td/Xe = 2 on each of two displays. The

corresponding point denoted by a circular symbol in Fig. 4A shows that the
gain_c_ e = 3/4 will suppress relative mean-squared error to less than

twice that value which could be achieved with contindous attention or

about sixteen percent of mean-squared input.

Several typical physical values of relevant parameters are listed

below as a function of effective time delay for the illustrative example

with equal dwell fractions of 0.5 on each of two displays.

_iXe = 0.4

 cTe--

TdlXe = 2

%1 c=2

"_e

(sec)

0.3

o.4

0.5

(sec)

o.6

0.8

1.0

%
(radlsec)

%
(radlsec)

2.6

2.0

1.6

5.2

4.O

3.1

%
(rad/sec)

1.3

1.0

0.8

--%= 0.5
2

i=1

on each display

shows that fixation on both displays occupies all available time

645



n-

O

n_

rr 4
LU

a

LIJ

n_

0 e2 3

z-_<,,, i

IlU

>

<
.J
iii

nr

- Yd
_e=2

EXAMPLE ONE

\

LEGEND:

MEAN-SQUARED ERROR FOR THE

CROSSOVER MODEL WITH
/r

NORMALIZED GAIN COcZe = -_-

(PHASE MARGIN _"_--= 45 deg.)

IIIII
6 8 10

FREQUENCY RATIO

e2

e 2
i

Td

%

%

OJ s

Wc

TOTAL MEAN-SQUARED ERROR WITH SAMPLING

INPUT-CORRELATED MEAN-SQUARED ERROR

WITH CONTINUOUS ATTENTION

AVERAGE SAMPLE DWELL INTERVAL

AVERAGE EFFECTIVE TIME DELAY IN CROSSOVER
MODEL

AVERAGE SAMPLING INTERVAL

2 zr/Ts

CROSSOVER FREQUENCY (CROSSOVER MODEL GAIN)

AVERAGE DWELL FRACTION Td/T s

Figure 4A. Mean-Squared Error as a Function of Sampling-to-Crossover
Frequency Ratio and Dwell Interval

646



I I I I IIII

-,o . . \, \

-- 6 " . -- -_.@_

-- 4 _s . .
coc (l:q) ml

-- 2
I I I I I I III

_10

-- 6

-- 4
(_s

coc (1-_)

n 2

ml0

6

CO s
4

COc (1-'q)

2

.4 .6 1

I I I I IIII I I

I I I IIII I I

.4 .6

I I I II

I

.4

I

I I I IIII

'<"9:_e: I NORMALIZED GAIN CO r = _

00_/,<__.._ ce _-

_'O/P/ PHASE MARGIN ZERO

"_ I SINGULAR STABILITY LIMIT0 s

_ COc (1-1/)

I I I I IIII
Td

2 4 6 10 --
re

I I I IIII

I I II

.6

I I IIII I I I
NORMALIZED DWELL INTERVAL

@%t:/_'6"(• I NORMALIZED GAIN COc_"e

I IIII I

1 2 4 6 10 20 Td

re
I I I I I IIII I

,IE,_ °e> .(<._/o

j\\\ COc (1 r/)

I I I I I IIII I
Td

1 ' 2 4 6 10 20 --
re

I IIII I

Figure 4B. Dwell Fraction as a Function of Crossover Model

Gain with Finite-Dwell Error Sampling

647



Example 2

Another possible sampling policy for two displays is given by the

following tables in which the dwell fractions are not equal on each display

and the frequency ratio _s/_0c(1-_) has been increased to reduce the relative
mean-squared error.

Display I

o_i_e = 0.4

_sl_c(1-_) = 5.33

_c_e = _14

TdlXe = I

_l_c : 3.2

_e

(sec)

o.4

(sec)

0.4

0.93

o.66

%

(raa/sec)

2.0

I._7

1.2

%
(rad/sec)

6.3(A)

4.7(B)

3.8(C)

_k

(radlsec)

1.0

o.79

0.6

Display 2

_._ = 0.4
i e

%/%(i-_)- 6

_o_e = _/4

,_ = .6

o.3

o.4

o.9

(sec)

0.6

0.8

1.0

G0
C

(radlsec)

l

2.6

2.0

1.6

%

(r,_/seo)

6.3(A)

4.7(B)

3.8(C)

(rad/sec)

1.3

1.0

0.8

2

_i = 0.4 + 0.6 = I
i=I

In this example, fixation on both displays occupies all available time since
the sum of dwell fractions is unity. Since only two displays are involved,

however, the average scanning or sampling frequency must be common to both.

Thus the only possible pairs of conditions are given by matching lines A,

B or C in each table. Display I might therefore represent an outer loop

display with lower bandwidth than inner loop display 2, for example.

A little reflection on the trends in Fig. 4B, marked by square, hexago-

nal and circular symbols, will show that, even with only two flight control

displays, the dwell interval can rarely exceed twice the effective time
delay without causing either regression of crossover frequency (able < _/4)

or, contrarily, an increase in dwell fraction greater than 0.9 Just to

maintain _cVe = _/4. The fermer alternative can be untenable to a pilot in

648



a precise tracking task_ the latter, untenable if he wants even to monitor

a third display. Indeed there now appears to be a sound basis for the

suggestion in Ref 8 _nd 25 *_+ ''_....... a....11 t_ m_y be a _hvsio-

logical property of the pilot population." Random sampling remnant theory

shows that dwell interval is relatively constrained in the range

Te _ Td _ 2Te by effective time delay in Control tasks. Effective time

delay, in turn, is clearly related in i_±_. 2 to ......_,_ _,_ neu _,_,]__....

properties of the pilot population.

When this theory is coupled with the adaptive feedback selection

hypothesis and applied to multiloop closure analysis, combined representa-

tion of associated inner and outer loop signals having a common control is

often necessary to reduce scanning workload. For e_ample, the sampling

frequency on an integrated display may depend on the greatest crossover

frequency for an inner loop signal, whereas the dwell interval on the

same display may depend on the greatest effective time delay consistent

with an adequate stability margin for an outer loop signal. Since these

requirements inherently conflict, the final test of the physical possibility

(or impossibility) of scanning and fixating on more than one display must

always be the summation of average dwell fractions. This summation cannot

physically exceed unity.

Since the results in these examples are commensurate with our practical

experience in both laboratory and flight, it appears that random sampling

remnant theory offers not only a rational explanation for adopted multiloop

scanning behavior but, when coupled with the adaptive feedback selection

hypothesis, it offers a practical basis for predicting that behavior in

advance of new measurements. Preliminary results of the first predictive

application of this theory to closed loop human tracking control measure-

ments under natural scanning conditions with two displays are reported in

Ref. 50, which forms a sequel to this paper.

CONCLUSIONS

We know of at least four important attributes of the operator's

sampling and scanning behavior which affect broadband sampling remnant9

vi___%z.,(I) sampling frequency, (2) dwell fraction, (3) sampling variability,

and (4) intersample reconstruction. These are listed in the center of

each column in Table I . In a multidisplay-control context, there is a

practical upper bound on average dwell fraction for each display because

the sum of all average fractions cannot physically exceed unity• Even if

only two separate displays are required to perform a precise tracking

control task, pilots' average fixation dwell intervals will be constrained

by sampling remnant to the range between one and two times the average

effective time delay in closed loops involving each display. There is also

experimental evidence for a practical lower bound on dwell interval in

flight cockpits on the order of 0.5 second, governed probably by display

velocity perceptual threshold and quantization remnant. For a given dwell

fraction, this places a practical lower bound on average sampling interval

(or an u_pperbound on average sampling frequency) for that display. These

bounds are likewise expressed in Table II above their respective attributes.
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The achieved mean-squared error for a given task depends on mean-
squared input, input bandwidth and display-control loop crossover frequency.
Adopted crossover frequency in turn depends on effective time delay,
s_npling frequency and dwell fraction. However, sampling remnant and
stability in the mean-squaredsense place an upper bound on average

s_npling interval (or a lower bound on average sampling frequency) and a

lower bound on dwell fraction for each display-control loop. The bounds

are expressed in Table I below their respective attributes. The lower

bound on average sampling frequency will always be greater than the lower

bound in the generalized sampling theorem as long as there is residual

remnant.

Thus two of the attributes in Table I are relatively tightly con-

strained by the task itself. Of the four listed, only sampling variability

and intersample reconstruction remain relatively adaptable for an operator

to minimize mean-squared error. However, these two remaining attributes

can provide only "vernier" adjustment of sampling remnant within the class

of skilled pilots. If proper average sampling frequencies and dwell

fractions cannot be adopted by the operator to match the task, sampling

remnant may be so large as to render vernier reduction difficult or

impossible.

Reduction of the standard deviation in sampling interval to less than

one-half the mean interval will minimize residual sampling remnant. Reduc-

tion of sampling variability comes primarily with skill development and

secondarily with reduction in the number of different displays. We say

that a skilled pilot learns to establish a scanning pattern (with small

variability). Likewise, effective intersample reconstruction probably

depends strongly on skill development and secondarily on display format,

contrast, brightness, size, sensitivity, etc. There is also experimental

evidence that intersample reconstructionj to be effective in reducing

remnant, may require parafoveal perception (of a non-fixated display),

whereas to be effective in suppressing the incremental scanning time delay

which can accompany reconstruction, it may also require increased fixation

dwell interval. If the remnant be large without intersample reconstruc-

tion, its further reduction may be very difficult for even a skilled

operator. In performing precise compensatory tracking tasks, pilots should

be provided with preferably only one but not more than two distinctly

separate displays for the purpose of flight control. More than one

symbolic signal may, however, be presented on each of two displays to take

advantage of pilots' parafoveal perceptual ability.

We have classified in Table I the bounds on the four attributes as

task-related or display-related. The task-related trade-offs have a

primary influence on sampling remnant. The systems analysis theory of

manual control for displays already treats most of the task-related trade-

offs explicitly. The important conclusions here are two-fold: (I) random

sampling remnant theory offers a sound basis for quantifying the display-

related trade-offsmin practice as well as theory, and (2) most of the

display-related trade-offs can probably provide only'for "vernier" reduc-

tion in sampling remnant, because they depend fundamentally on skill

development.
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31. Application of Pilot Models to Display Design
Some Basic Experiments

R. O. Anderson
Air I;nrrp I:liahf Ilun_mire I _hnr_tnru IAKKI_I I

ABSTRACT: A brief summary of experiments using simple controlled elements in

primary tracking tasks, and two forms of secondary task, is presented. These

results, in the form of eye movement data, task performance, etc. are compared

with one existing theory, and a number of possibilities for future work are pre-

sented. The results also have implications for "workload" definition. For a

more detailed discussion of this work, an Air Force Institute of Technology

Thesis (GE/EE/69-18) by Maj J.E. Wanamaker and Capt W.A. Sower should be obtained

from DDC.

General interest in the development of display design methods based on

human response analysis techniques has increased in the last few years, and at

least two different approaches have been proposed in References 1 and 2.

The approach in Reference l, by STI, relies heavily on the idea of an increase

in pilot effective time delay due to sampling between two or more displays. Some

experimental results are available now to support this contention, but they have

not yet been published, mud are limited to k/s as a controlled element.

The approach in Reference 2, by BBN, relies heavily on the concept of the

pilot as an optimal controller, and more recent refinements to this approach ex-

tend the "optimal" model to sampling as well. The latter ideas, with experimental

supporting data, will be published in report form in the near future.

Since the STI approach has received less experimental verification, the

writer proposed a Master's Thesis Topic along these lines to Major J. E. Wanamaker

and Capt W. A. Sower of the Air Force Institute of Technology (AFIT) 1969

Electrical Engineering Class. The following is a brief summary of their thesis

conducted under the advisement of Prof. J.J. D'Azzo, and sponsored by the writer.

Complete results are presented in Reference 3, which will soon be available from

DDC.

As mentioned previously, the STI approach considers the effect of display

sampling to produce an increase in pilot, or human controller, effective time

delay above that for continuous attention tracking. Inparticular, the increase

_n time delay is given by (Reference 3):

_T= K(I- R)(T s - Td)

where K = a nondimensional constant on the order of 0.5.

R = nondimensional constant indicating the relative weighting of sampled

amplitude and rate (O_R_I.O)

Ts = sample period (seconds)

Td = dwell time on the particular display (seconds)

This, or a very similar, expression can be developed from various assumed sampled

data reconstruction models (References 1 and 3).
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Also, scanning "work load" is defined as Td/Ts for a specific display

(per Senders in Reference h) in the STI approach.

To determine the general validity of these concepts (and others too

involved to discuss here), a series of experiments with simple controlled

elements (k/s, k/s2, k/s-l) as primary tracking tasks (similar to those in

Reference 6) with filtered white noise inputs, was conducted. To induce

sampling, two different forms of side task were also used. One was an un-

forced k/(s__) controlled element, and the second (one or the other was used
in each case) was a "work load" measurement side task similar to that used in

Reference 5. In all cases eye movement, mean-square error, and error power

spectra data were obtained. The subjects were pilots. A very brief review
of these results follows:

A. Incremental Time Delay: In the previous expression forAT, the values

of Ts and T d were obtained from actual eye movement data. The theoretical

development yields a value of K and the only unknown parameter then is the value

of R. Actual pilot describing functions, under sampling conditions, were not

obtained. However, two other indirect experimental measures of _T were

obtained. The first used measured ratios of error variance to input variance

as compared with pilot model data with an increased time delay. In this case,

pilot gain was adjusted for minimum error variance, but the remainder of the

model was identical to the continuous tracking pilot describing function. The

second, closely related method used the same "optimal" pilot model to predict

error spectra bandwidths,as a function of increased time delay. The following

results were obtained for a low (0.5 rad/secO input bandwidth using the "work

load" side task (averaged data from five, two-minute, runs; T's in seconds):

Subject Controlled T
Element (Cont. Attn.) T(_be) T(_e2) R(_be)

k/s .30 .489 .h0h .073

k/(s-l) .21 .431 .271 0

k/s 2 .45 .302 .634 >i.O

2

k/s .30 .610 .527 0

k/(s-l) .21 .493 .329 0

k/s2 .45 .446 .827 .705

k/s .30 .388 .451 .32

k/(s-l) .21 .311 .323 .53

k/s 2 .h5 .343 .808 >i.0
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where I- is an approximate, continuous attention, effective time delay

(Reference 6) for the input bandwidth; T(0Jbe)is the experimental pilot time

error variance; and R(_Obe ) is the nondimensional value of R observed based on

measured error bandwidth. The T(&)be) and T(_;e2) values agree quite well,

except for the k/s 2 cases. This is, however, reasonable since the "pilot

remnant in the k/s 2 case would be accounted for by a larger T(#e2 ) .

The values of R measured are in general agreement with assumed values in

the example in Reference i. The value of R " 1.0 for the k/s2 case, where

the pilot is known to generate lead, is an indication of displacement and

relatively high rate weighting for this controlled element. Since lead genera-

tion is a form of displacement and "high" rate weighting, these results support
the theory.

B. Work Load Measures: The following data were obtained during the same

experiments covered above (again averaged data):

Subject Controlled Element Ws Wp Ws + Wp

k/s .497 .509 1.006

k/(s-l) .45_ .58O 1.03_

k/s2 .3h9 .708 1.057

k/s .h92 .486 .978

k/(s-1) .h5_ .60_ 1.058

k/s 2 .436 .642 1.0T8

k/s .hOl .727 1.128

k/(s-l) .308 .637 .945

k/s2 .h23 .662 1.085

where W s is the side task measured work load, and Wp is the primary task work

load defined as Td/T s. Since only two tasks were involved, the sum Ws+W p

should be unity. The results certainly tend to verify both methods of

estimating work load.

C. Performance Prediction: Of course, the theory should be able to

provide a reasonable prediction of pilot/vehicle performance, say as measured

by error variance, _e2 , under multiple display or task situations. The
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following table shows a comparison of measured values for the same situation

as above versus predictions under the assumptions that: (i_ primary task

work load is known, (2) R = 0 for any task where pilot lead is not generated,

and (3) the predicted sample rate is twice the bandwidth of the closed-loop

error:

Controlled Predicted Measured %

Subject Element Ge/Gi _e/Gi Difference

k/s .230 .203 13.3

k/(s-l) .260 .311 16.4

k/s .240 .278 13.7

k/(s-l) .240 .h21 43.0

k/s .175 .229 23.6

k/(s-1) .220 .397 44.6

The results are, in general, quite good for the k/s controlled element and

fair for the k/(s-l). For the k/s 2 controlled element, with observed values

of R & 1.0, no chmnge in Ge/G i from continuous tracking would be predicted.

As mentioned previously, however, the remnant would become important in

this case.

Future Work: The results presented up to this point are quite promising.

However, as usual there is another side to the story, and much really remains

to be done. A few of the areas where problems were encountered are listed

below (see Reference 3 for more details):

1. When the bandwidth of the input was extended to 1.5 rad/sec., the

required "sampling" rate was beyond the physical capability of the subject.

The result was "interupted continuous tracking", although the predicted

results were still "fair". This input bandwidth may be high in respec t to

many practical problems, but some means to handle physical limits in these

cases should be sought.

2. For the small bandwidth inputs, and the k/(s-l) controlled element,

the pilots obtained lower Ge2 values during continuous attention runs than

the simultaneously operated"optimal" fixed form pilot model. Some indica-

tion that pilot lead was being generated, with a time constant of about

0.I sec., was found but time did not permit further study. Perhaps the

subject of continuous attention with very low input bandwidths should be

investigated.

3. For the k/s 2 controlled elements, the measured error bandwidths

were generally _than the sample rate indicating a non-sampled mode.
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Perhaps the generally larger remnant in this case affected the results, but

the prediction of sampling rate presented a problem in almost all cases,

especially for k/s 2. This might be quite serious when ms ny displ----ay__

considered.

Summary: In general, the experimental results agree quite well with the

increased pilot time delay model of sampling, and the definition of scanning

work load for a given display as the ratio of dwell time to sample time seems

valid. However, the best correlation between theory and experimental results

would seem to occur in a rather small range of input bandwidths of less than

0.5 - 1.5 rad/sec. At the lower end of this range, pilot discribing functions

for continuous attention tracking may require refinement. At the higher end

of the range, physical limits preclude true sampling, and sampling model

refinements to account for this fact appear necessary.
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32. Describing F,_mctionModels of a Driver-Aid

System for Car Following *

Ronald G. Rule and Robert E. Fenton

Ohio State University

ABSTRACT

Excellent car-following performance can be obtained by aiding the

driver; however, this has previously resulted in asymptotic instability.

In the study reported, a control stick with a built-in kinesthetic-tactile

display aid for the driver was tested in a car-following situation, and

describing-function models of the resulting driver-vehlcle system were

calculated. Asymptotic stability was obtained by using control compen-

sation, which also resulted in improved longitudinal handling qualities.

A. Introduction

The quality of high-speed, high-density traffic flow can be im-

proved by use of an automatic system for the longitudinal control of

vehicles in a traffic stream. Such a system should include a manual

mode so that a driver can, when necessary and permitted, regain con-

trol of his vehicle. The performance of the manually controlled system

must be cornpatible with that of the automatically controlled one, so

that the former would not cause fluctuations in an otherwise automatic-

ally controlled traffic stream. The conventional driver-vehicle system

is not satisfactory in thls respect as considerable performance var-

iability, both within and among drivers, has been observed even in

s teady- s tale s itua tions.

The goal of the research reported here is the improvement of a

driver's steady-state, car-following performance so that it would be

* This research was sponsored by The Ohio Department of Highways,

Columbus, Ohio in cooperation with the Bureau of Public Roads. The

opinions, findings, and conclusions expressed in this publication are those

of the authors and not necessarily those of the state of the Bureau of

Public Roads.
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compatible with that of an automatic longitudinal control system current-
ly under development. :':-

Several investigators have reported that the driver is a poor head-
d 1-3

way controller under both steady-state and transient con itions.
Gonsiderable evidence indicates that this variability is due to the driver's

inability to detect slow relative motion between himself and a lead car.

Thus, it can be reduced by presenting him with additional information.

This has been done both visually 1, 2 and tactually 3 and substantial

reductions in headway variation were obtained.

However, improved tracking performance is not the only cri-

terion by -which a driver's car-following performance should be judged.

It is also necessary to insure that the corresponding driver-vehicle

system is both locally and asymptotically ( long line) stable.

In a previous paper, it was shown that a very small mean-

square tracking error could be obtained using a kinesthetic-tactile de-

vice for the display of headway information to the driver.4 However,

the resulting system was also shown to be asymptotically unstable. In

the research reported, various approaches for obtaining asymptotic

stability using this display are examined.

B. Theory

A block diagram of the driver-vehicle system is shown in Fig. 1.

It is assumed the driver is primarily concerned with longitudinal con-

trol and that only small lateral corrections need be made ( This cor-

responds to steady-state car following on a long, straight superhigh-

way). Note the presence of several inputs to the driver--his normal

visual input, a display input, and one due to motion cues. If the driver

receives sufficient information visually and from the display to control

the vehicle, then the system may be treated as having a single input

and a single output. A linear model G(jm) can be obtained for such a

system by using well-known techniques of time-series analysis. This

model will be of the form

_vlv 2 (j_o)
G(j_) = (1)

_vlvl (J_)

where

and

qbvlvz(j_) = cross-power spectrum of lead and driven
car speeds,

q_vlvl (j_o) = power spectrum of lead-car speed.

*" This is part of a larger effort toward the development of an automated

highw ay sys tern.
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1

Big. 1--Block diagram of dr_ver-alded

sys tern.

These power spectra are readily obtained from certain operations on

time records of the lead-car speed (v I) and the driven car speed (v 2}.

It should be noted that (1) can also be written as follows:

G(jto) = Vz (jW) (2)
Vl (jto)

where V l (jto) and V z(jto) are the Fourier transforms of those parts of

the lead car speedy a(t) and the controlled car speed v z(t) which are

linearly correlated.

Cosgriff 5 has shown that a disturbance will be attenuated as it

propagates down a line of traffic if

[G( jto)[ < 1 for all to (3)

Hence, asymptotic stability can be determined from an examination of

a system's closed-loop frequency response. This requirement can be

conveniently viewed us<rig the Nichols Chart shown in Fig. 2, where

the region corresponding to 20 loglo [ G(jto) [ > 0 db is labelled asymp-

totically unstable. Note that necessary but not sufficient conditions on

the open-loop function are a phase margin greater than 60 ° and a gain

margin greater than 6db.
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0

Fig. 2--Asyrnpto'ticallystable and unstable regions as depicted on a
Nichols Ch _rt.
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In previous studies where the driver was concerned with headway

• L'I ........... a-." _ _'L. .... *.1- _ L L1-- -- -- -" ..... 1 V I )maintenance, _,_ culi_i.,_,_ was _,_u_1 so _I_L L*L_ _'gn_ ,'_ S

exciting the display was a linear combination of headway deviation and

relative velocltyV(s). Thus

v(s) .....
X(s) =C i _ +_zVtS) (s=_+ j_)

or

x s,c(I+c21v(s) - s _s

Since" the small-signal vehicle longitudinal dynamics were apprcximated

bf

K

Ts+l

The resultant open-loop transfer function was

]C1 GD(s)
Ts+I s=jLo

where GD(J_0) was the describing function of th4 display-driver-control

stick combination. The driver must behave so that this resultant function

does'not lie in the unstable region shown in Fig. Z. Alternately, he must

at least insure that the conditions on both gain and phase margin are

satisfied. The subjects did not so behave, and the resulting system was

thus as}_-nptotically uns table.

It should be noted that this system contained a sizable time lag

in so far as the driver-subject was concerned. The subjects terr/ed to

overrespond to the display, and considerable training was required be-

fore they were proficient. Further, even though the vehicle handling

qualities were satisfactory, the investigators decided these could be im-

pr ore d.

The long lag seen by the driver can probably b_ overcome by

rapidly providing him with information related to his control actions.

This can be accomplished by placing a unity feedback loop around the

display-driver-control stick combination as shown in Fig. 3. If one

views this as a simple sKngle-loop compensatory system, then one has

an operator in cascade with a pure gain element. The resulting closed-

loop function can be approximated by a single first-order function with

operator time l_g included. Thus, one might adequately approximate the

describing function A(s) of the resulting closed-loop combination by

unity gain and zero phase shift for low frequencies.
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DISPLAY DRIVER

I

ICONTROL [ INPUT TO

VEHICLE
PLANT

Fig. 3--An illustration of the use of unity

feedback "around" the driver.

The effects of variations in the plant dynamics can be partially

overcome by using internal velocity feedback through a gain of 8 as

shown in Fig. 4. If A(s) = I, then one has a resultant minor-loop

func tion

K

I+SK

T
s+l

I+61<

Note that a proportional plus integral compensator is in cascade with

this function. If one chooses'the zero of this compensator so that

Kb_ T

K a I+ 6K

one obtains

KaK/( I + 8K) _ I4c
s s

Henceforth, this term is considered as the effective plant of the over-

all closed-loop system.

(4)

vEHICLE

F PLANT

v2(s}

Fig. 4--The effective vehicle plant.
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One effective approach to car followh_g is via the use of a headway

controller. The corresponding small-signal car-following model is one

in which t]_e increlnental acceleration ( pv z ) of a controlled vehicle is

equal to a linear co]r_bination of relative velocity (v) and a headway

I alpv z = Klv + K z(h - K 3vz) p _ _ (5)

where h is the incremental change in headway between the lead and con-

trolled vehicles, and K I, K z and K 3 are constants.

Kc

A headway controller can be realized using the effective plant -_-

and various compensation elements as shown in Fig. 5. The cor-

responding closed-loop function is

i,IzV z (s) _ K, s+ K; I

V 1 (s) sz + (K 1 + KzK 3) s + K z
(6)

The equation is completely determined by specifying the pole-zero lo-

cations. Alternately, one can specify K3, % and either K I or K z.

Note from (5) that K 3 is a measure of the change in steady-state head-

way resulting from a steady-state change in v z. The quantity T is the

effective time constant associated with this second-order system. One

can use Eqns. (3) and.(6) and show that a necessary condition for

asymptotic stability is 6

K3 > 0. 787
T

Clearly, this condition must be satisfied by any satisfactory system.

Fig. 5 -- Block diagram of headway controller.
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G. Test Vehicle Instrumentation

The side-mounted control stick shown in Fig. 6 was mounted in

a 1965 Plymouth sedan to replace the steering wheel, accelerator pedal,

and brake pedal. The vehicle was steered by moving the control stick

head to the left or right, accelerated by moving the control-stick

carriage forward, and braked by pulling it back.

A kinesthetic-tactile display was built into the head of the control

stick as shown in Fig. 6. One determines the magnitude and direction

of an error by feeling the "finger" displacement from the neutral or

"flush" position. When the finger protrudes, one moves the stick for-

ward, and _vhen the finger recesses, one pulls the stick back; thus, he

follows the finger.

The headway and relative velocity between the lead and controlled

car were obtained via a mechanical takeup reel, or "yo-yo", which was

attached tothe two cars. A 1963 Plymouth station wagon v,as used for
the lead car.

D. Experimental Description

All tests were conducted on a 5-mile section of Interstate Highway

Z70 near Columbus, Ohio. This road was nearly straight and level and

essentially free of other traffic.

Four male subjects ranging in age from 19 to 24 years were used

in this experiment. They all had driving experience and either 20/20

vision, or vision corrected to 20/20. All of them had previously used

the control-stick-display combination for many hours of highway driv-

ing. Thus, it is probable that no learning effects are present in the re-

sults reported here.

The lead and following cars were initially stationary with a static

headway of some 5 feet. The lead-car driver was instructed to grad-

ually accelerate to a given speed and then do one of the following:

1) maintain a constant speed; or

2) vary his speed within + 5 mph of the preset value.

It should be noted that a considerable--amount of random lead-car speed

variation was present in both cases as can be seen from the typical

spectrum of lead-car speed shown in Fig. 7. The driver of the follow-

ing car was instructed to follow the finger and attempt to keep it flush

with the head of the control stick. However, the experimental run did

not begin until both vehicles were up to speed. Then, the time histories

of both the lead and controlled car's speed were recorded for 5 min-

utes. The headway during a run was between 38 and 50 ft. for the tar-

get speed of 40 mph.
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Two sets of parameters were examined--K 3 = T = 1 and K 3 = T =

4--corresponding to a highly responsive system, and a less responsive

one, respectively.

E. Preliminary Tests

Preliminary tests were performed to determine various system

parameters that would result in reduced driver effort and be compatible

with excellent overall system performance. A block diagram of the

driver-control loop of the overall system is shown in Fig. 8. The pri-

mary parameter to be specified here is the open-loop system gain which

detern_ines the required control stick motion to offset a tactually dis-

played error. Several experimental tests, similar to those already des-

cribed, were performed for all subjects at a speed of 40 mph. It was

found that an optimum choice for the ratio of control-stick displacement

to displayed error indication x_.as 8 in/in. This value was used in all

subsequent tests.

F. Experimental Results

The data are presented in terms of closed-loop frequency response

plots of both magnitude and phase for each configuration. In the first

case K 3 =-r = 1, and a Bode plot of expected system performance based

on Eqn. (6) is shown in Fig. 9. The results from 2 runs on each of 3

subjects are shown in Figs. 10-12.

It is immediately apparent that the theory and results are not in

good agreement, as considerable deviations from theory in both magni-

tude and phase were noted for all three subjects. Further, the magni-

tude is greater than 0 db with a pronounced peak at approximately 1 tad/

sec. in all cases; thus, the system is asymptotically unstable.

However, it should be noted that similar results were obtained

both within and across subjects which implies a certain consistency in

driver behavior. Some insight into this behavior can be gained from

an examination.of a typical time history both lead and control car speed

( see Fig. 13). Note that small higher frequency components ( with

periods of approximately 5-10 seconds) of the lead-car speed were ac-

centuated by the car-following system, as one would expect from the

transfer function data presented in Figs. 10-12. The peaking was prob-

ably caused by the highly responsive characteristics of the controlled

vehicle. All subjects said that it was both too responsive and too diffi-

cult to faithfully follow all control commands.
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Fig. 13--Time history of lead and controlled car

spee_],_ (K 3 = "r = I).

In the second case, the parameters K 3 and i- were set equal to 4;

thus, the resulting system was much less sensitive than before. A Bode

plot of expected system performance based on Eqn. (6) is given in Fig.

14, and the corresponding data obtained from 2 subjects is contained in

Figs. 15-16.

Here, one should note the relatively good agreement between

theory and experiment. ;_ In particular, the experimental curves all lie

below 0 db in magnitude, and the system is asyz-nptotically stable. This

can also be observed from the typical time histories of lead-car speed

and controlled car speed shown in Fig. 17 (Note that the driver has

responded so as to reduce the speed variability of his car with respect

to that of the lead car).

,_The variability between the theoretical and the experimental curves was

due primarily to operator behavior. The magnitude of the describing

function of the minor loop shown in Fig. 3 was approximately_ 0.3 over

the frequency range of interest instead of unity as predicted. 7 In contrast,

when the vehicle was stationary, and the inpu_ to the minor loop was a

signal which had been recorded a_ this point during a previous highway

run, the corresponding closed-loop describing function magnitude _as

approx__z_',a_ely uni_y. The difference ca_ be primarily attributed to the

important effects of vehicle motions on _he driver's control actions.
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The subjects' behaviors were quite consistent and all subjects

were unaminous in saying that it was easier to follow the displayed

signal than it was for the previous case. Further, they said the longi-

tudinal handling qualities were very good and that little effort was re-

quired to operate the vehicle in this mode.

G. Conclusions

The goal of the resea.rch reported here is the development of a

manual control mode which will be compatible with the automatic vehicle

control system under development at this laboratory. One possible man-
ual mode consists of a control stick with a built-in driver aid--a kin-

esthetic-tactile display. Excellent tracking performance was previously

obtained using this combination; however, the driver-vehicle system

was asymptotically unstable. The primary goals of the research re-

ported were the development of a driver-aided system which resulted

in both asymptotic stability, and good vehicle longitudinal handling

qualities.

It appears from the discussed results that these goals are attain-

able provided one chooses a proper functional for exciting the driver

aid. However, the parameters included in this functional include meas-

ures of both the vehicle's response capabilities and the required minimum
time headway in a stream of vehicles. Thus one must make a realistic

choice which not only results in the attainment of the desired control
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characteristics of the individual vehicle, but also in certain desired

traffic-flow characteristics. The exact relationship bet_veen such quant-

i[/es and the parameters contained in the closed-loop vehicle system

are currently being investigated together with various other parameter

choices in Eqn. 6.
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33. Resolved Motion Rate Controlof

Resolved Manipulators andHumanProstheses*

Daniel E. Whitney
M. I. T.

The kinematics of remote manipulators and human prostheses is analyzed

for the purpose of deriving resolve(! motion rate control. That is, the opera-

tor is enabled to call for the desired hand motion directly alonF axes rele-

vant to the task environment. The approach suFgests solutions to problems

of coordination, motion under task constraints, and appreciation of forces

encountered by the controlled hand.

Introduction

Rate control is currently one of the two most common ways of contro!!in_

a remote manipulator. The operator seeks to specify the direction and s_eed

with which the manipulator is to move using a Joystick or a set of s_itche_.

It is used in most industrial app!icat_ons where larBe force amplification Iv
neec!ed and where environnental constraJ_d:s er _]i_t_nce bet_:een controller and

msnipulator dictate a non-riechanical control linh. The other common control

method is master-slave control, in which the o_erator _uides a (usually full

scale) model of the manipulator so that the remote slave will follo_7 a s_ecl-

fled path and come to rest at a s_ecified point. It iv usua!iv used _ith

purely mechanical linkages to operate "hot la1," manipulators for precise tasks

and has the favorable attributes of spatial correspondence and force feedbach.[l]

Rate control seems the predominant mode in most nrototype artificial arms

to date. An exception is the "Boston arm" (Harvard-:_.I.T.-Liberty _hltua] In-

surance CO. joint project) [2]. This is a pottered elbow7 prosthesis which ampli-

fies F2fG signals to generate force output (_ith force and velocity feedback}

in one deF_ree of freedom.

_en th(- manipulator is pottered by electric motors, hydraulic actuators

or the llhe, rather than },y the operator's o_nl muscles, the problem of coordi-

nating the actuators arises. The problem is solved automatically in master-

slave control if master and slave are geometrically similar, since coordinated

motor drive signals may be picked up directly from transducers on the master.

Uith rate control, however, the problem is more for_ida]_le. The operator has

an array of switches connected one-to-one to tl_e motors. He is thus controlling

in what might be termed "arm coordinates." 7'_ore relevant to the task would be

"world coordinates," such as horizontal, vertical, reach alon_ the hand direc-

tion, and so on. Hand motions alon£ all such directions are ea_i!y perceived

visually and are concentrated at the hand, _here as the arm coordinates are

Work supported in part by the U. S. SocJa! and P ehabilit_tion Service of the,

Department of Health, Education a_c_ Ue]fare.
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associated with joints distribnted alone t_._ea_, difficult to monitor and,

sin?,ly, irrelevant to the desired motion.

Resolved motion thus means that the notions of the various motors are com-

bined and resolved into separately controllable hand notions alone x,:orld coordi-

nates. The implication is tltat several motors (_erhaps all six in a six degree

of freedom device) must run simultaneously at different and time varying rates

in order to achieve steady hand r_otion alon7 one world coordinate. It seems

unlikely that a manipulator operator or an amputee will be able to s_ecify speeds

and directions for more thtm two or three motors at a time (one or tx,o if he

wants some attention free for other thouEl_ts). If he xTere controlling in arm

coordinates, the result would be inefficient or uncosmetie zig-zags. It mal'.es

more sense to let control be exerted directly in world coordinates, especially

if it must be done along a fe_J at a time.

The amputee's problems of coordinating the motion of several motors and of

appreciating forces which oppose motion are similar to those encountered in re-

mote manipulation. Often the perception of these forces, the discovery of

directions along _rhich the environment is stiff or along x:hieh it yields, is

central to the accomplishment of tasks. The discussion x._,hich folloxTs is rele-

vant to manipulators and prostheses, and to generation of either motion or

force along world coordinates.

Other Approaches

A previous approach to this problem involves mountinE the individual motor

switches on a Joystick whose degrees of freedom correspond to those of the

manipulator [3]. T_lis has proven of value even when this correspondence is

weak [4], Drawbacks are

i) true resolved motion does not result

2) it is difficult to apply to redundant manipulators or to those

which differ markedly from a human arm

3) it is inapplicable to control of artificial limbs

Of course_ master-slave control solves the resolved motion ,_rohlem auto-

_latically_ but this method is not applicable in all ca._e_. For example:

I) confined operator worh space or great size disparity between master

and slave

2) h_mlan prostheses

3) when the operator must perform other motor tasl:s simultaneously

with manipulation

4) if the manipulator is redundant, has offset joints, or has a con-

tinuous flex or snalce structure

Supervisory Control of the manipulator [5] rer,_oves from the operator all

need to specify motor speeds, but puts this requirement on a computer. Thus

the problem remains.
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Capabilities of }_esolved _t_otion Rate Control

Here _ _- _ _I,_ _+,+I_-_ _ _,,I_ _,+.I. +_ resn1_7_] motion r_

control were available :

i) motion aloug an arbitrarily oriented straight line in space, such

as parallel to a table top or blackboard, or in and out of a confined

of how many motors tlLere are.

2) motion of the hand while keepin£, its angular orientation in space

fixed. Again three gets you six. This is useful in the arc_,_tvpical

spoon to mouth problem faced by arm amnutees.

3) angular reorientation of the hand and arm while keeping its spatial

location fixed. This is useful for tt+,isting operations, pryinE and

s cooping.

4) motion along hand-oriented axes, the most useful of which would

be a "reach" direction.

5) motion along a mixture of hand and wrist-oriented axes, such as reach

(hand-oriented) plus lift and sweep (vertical and horizontal), the

latter two wrist-oriented.

kqtile any of these features appear useful, they represent an attempt on

the whole to provide the user with natural control as far as possible. It is

likely that operators will not adapt easily to the notions of axes, angles and

resol, tion. It is more natural to be able to select motions a!on_ directly re-

levant directions (especially those in 5) above). One finds a tarF_et, points

"go " in some sense. Using visual feedback, he makesthe hand, and then says , ,

corrections on the fly. The manipulator or prosthesis becomes part of its own

control mechanism. It might be that it _ould be easier to learn to control mlch

a device. Capabilities such as B), 4) and 5) allotz one to parse tasks an____!_con-

trol switches into corresponding subsets and deal _ith them separately and se-

quentially.

This is also relevant to the generation of control signals by an amputee.

The Boston arm is blessed with the assumed availability of bicep and tricep

muscles, from which EMG signals are taken. Since these are the muscles which

operated the lost elbow, the correspondence is immediate and the operator learns

quickly. A forequarter amputee (no arm sttunp at all) is not so fortunate.

Muscles (or nerve fibres) once irrelevant to arm motion must no_, be used.

When six or more muscle or nerve pairs are needed, it is tzorth speculating that

the amputee will learn faster if the motors are lumped into task- or _orld-re-

lated groups, controllable by much less than six pairs at a time. (_,is in no

way is meant to ignore the fact that, as children, we all learn to coordinate

our arm muscle_ using arm coordinates. But this takes two to three years of

very hard work.)

t[athematics of Hanipulators and the

Proposed Rate Control Scheme

Six degrees of freedom, three positions and three rotations, are required

to specify completely the location and orientation of an object in space. A

manipulator therefore usually has six degrees of freedom; ho_Tever, this may not

be enough. Not every six degree of freedom manipulator design allows the hand

to be placed at all locations within the sphere of reach [6]. Also, in some
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applications, _dditional degrees of freedo_ may 1,e neerled rh_e to environmental

constraints. Such manipulators are called redundant. (The natural htmlan arm

is highly redundant.) They can reach more locations and reach them _Tith smaller

joint angle excursions than can non-redundant manipulators. This ma]_es control

easier since it avoids runnin_ into the stops and provide_ many alternate _'ays

of achieving the desired endpoint configuration, one of which may not be too

different from t]_e current configuration.

Let us group the external variables of interest, such as the six coordin_,tes

of the hand, plus "elbow7" locations if desired, into a vector x. Then, for any

manipulator, _x is related to the motor positions, grouped iuto ti_e vector 8_, 1.y
some usually complex vector relation

x_--f(!) (_)

The motor positions can be related to the joint angles in many ways. The rela-

tions are usually linear, involving gears and chains typically, and are assumed

to be absorbed into equation (I). _,_en _x and _0 are of the s_le dimension, the

manipulator is non-redundant. In a redundant manipulator, _ is of higher di-

mension than x. Since w__echoose x, perhaps choosing differe--nt x's at differen_t

times during a manipulation task, _._ecan mahe a non-redundant ma--nipulator re-

dundant soley by c_oosing not to control some portions of _x. Conversely, by

arbitrarily freezing some motor positions or by adding more hand or '_ibow" coor-

dinates to x_, we may make a redundant manipulator non-redundant. In any case,

(i) applies in some form.

If _e differentiate (I) with respect to time, we obtain

dx

a-Y= ! = ,+(_)_ (2)

where J(O_) is the Jacobian of f with respect to 0_, a matrix with

+fi _I < i < n

[J]ij =_ ll 7j _7n
(3)

where n is the dimension of x and m that of _. Thus if we are content to

work with rates rather than positions, the relationship is linear.

If one were presented with a rate control s_Titcb box, one's first act in

learning to operate the manipulator would probably be to activate each s_itch

individually and observe the effect. If one does this in such a _,Tay that the

affected motor runs at unit speed, then one has F_enerated, in effect, the ana-

io_ of one column of matrix J. This really will not help much, since resolved

motion requires that several motors run simultaneously at different, non-unity,

non-constant speeds, by analogy with _roups of r4uscles in one's arm. If n--m,

we may synthesize these speeds by inverting J(0), wherever the inverse exists,
to obtain

-- ,Cl(o) x (/0

The control strategy indicated by (4) is: associate xTith each switch a com-

ponent of _; feed the switch outputs through J-l(8_) and feed t_,e result to the

motors as 8, the motor speed commands. Then, for example, if x contains both

position and orientation coordinates of the hand, %_e may chanFe--orientation

without changing po._ition merely by specifying zero velocity for the position

coordinates in x_',and _,Thatever we _Tant for the orientation coordinates. Equa-
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tion (4) does the rest. (It is interesting that (4) is analo%ous to the Newton-

Raphson method for finding a 8_ to correspond to a given x_. This is relevant

• 171" i .....to comnuter position control of an_pu±_uo[_.j

If m>n, j-I is not defined. If we do not wish to freeze arbitrary coor-

dinates in 8 or add some "elbow" coordinates to x, we may _et around the dif-

ficu!ty by defining an optimality criterion which the manipulator must satisfy

while undergoing its motions. For example, minimize

!
G, = 2.] _- A i dt (5)

during the motion. Here, superscript T denotes vector transpose and A is a

positive definite weighting matrix. Solution of such problem q usually in-

volves a great deal of computation. A simpler criterion is

: y._ A _ (_)

That is, the assumed "cost" of motion is approximately the instantaneous weighted

system kinetic energy. (See [7], where a different criterion was used.) Adjoin-

ing (2) to (6) with Lagrange multipliers and.assuming, as before, that the de-

sired i is kno_1, we obtain for the optimal 0

__T,= _:y [J(8_)A-I J(o)T]-I J(O) A-I (7)

which is directly analogous to (4). This method is equivalent tO solvin$ (4)

via a pseudo-inverse in such a way that O minimizes [_ - j_]T A -z [_ - JO__] [fl].

The above derivation, however, makes plain the influence of A.

X

lle may choose A so as to emphasize the role of some components of , and de-

emphasize others, for example, by heavily penalizing motions of tile latter rela-

tive to the former. This is another way of obtaininF some of the motion features

listed above which also protects the operator somewhat a_ainst errors of emphasis.

To synthesize the required A for this purpose, we begin with the cost criterion

I .T
c' = _ x B i (r)

B can usually be chosen by inspection to be positive definite and provide the

desired relative emphases. For example: chanF# hand orientation while keeping

its location realtively fixed. Substituting (o) into (8) gives

=i (_)

Comparing (9) with (6), we may identify

A : jT(o) I_J(O_ (i0)

which synthesizes A. Note that this A is not necessarily positive definite.

What is important, however, is that B be positive definite, and that the result-

ing A be non-singular.
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To obtain motion along hand-oriented axes, we need only note that, as far

as rates are concerned, the hand-oriented axes are merely rotated _rom the fixed

coordinate axes from which wrist position is measured. Then rates h along the

hand-oriented axes are related to the original x_"by

= _ I_ (II)

llere, R is a partitioned matrix containing the usual rotation terms_ the latter

being trigonometric functions of hand orientation, and thus functions of _8. Sub-

stituting (II) into (4) gives

= J-l(e) P,(0) I"_ (12)

(T_,_o remarhs: i) even though h is probably of lower dimension than x, all O's

will in general be changing when (12) is in force, since hand po_ition is separ-

ately controllable; 2) equation (ii) may equally well be substituted into equa-

tion (7) _ith similar results.)

Examples

Figure i shows a sketch of a typical industrial manipulator, together with

a convenient coordinate system. This is actually a four degree of freedom manip-

ulator. Its links all lie in one plane, whose orientation is measured through

angle d. y y

----" X

(a) Figure i

d

Angles

a_ b, and c are measured

from references in the

x - z plane

(b)

a) Sketch of a manipulator in three dimensional space

b) View of manipulator in the plane of the linkage

The four degrees of freedom are the x,y,z coordinates of the hand plus angle c,

the hand's orientation. These four quantities comprise x. The four drive

motor positions are denoted by 8a, eb, 8 c and 6d, and comprise 8_. While 8 d drives

angle d directly, the other 8's may be related to angles a, b and c in many ways,

summarized by
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(i._)

where M is a 3x3 matrix, and a _ b and c are the values of a, b and c when
O 0 0

take on their (arbitrary) zero positions. A useful matrix M is8a, % and 0c

i01M = 1 (ll 0

0

which makes each external angle independently controllable. This relation is

mechanized in the manipulator attached to the oceanographic research vessel

= b = c = 45*, we get for f(0):ALVIN [9]. Using a° o o ----

a

y = -L 1 sin(0 a + _) + L2 sln(%_ +f) - L 3 sin(0 c +_)

z = x tan 0d

(15)

c= 0 +!
c 4

When _8 = O, L 1 = L 2 = 26, L1 = 11.5, we get for J(o_)

J (0__)=

r

-18.51 -18.4 -8.14 0

-18.51 18.4 -_.14 0

0 0 n 45.1

0 0 i o

(16)

Then

J-l(o)

-.027 -.027 0 -.4A]
-.027 .027 0 o I
o o o 1!

oJo n .0222

(17)

So, for example, if near _e = _° we wished to tilt the hand without chanFi1_g its
location, we would call for
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(I_)

perhaps by pushing a switch labelled "Hand Orientation." Substituting (in) and

(17) into (4), we find that the resultinF_ motor speeds would be

= -.44 6
a

6b = 0

g =_
c

Od = 0

(lO)

in the vicinity of O_ = 0_, varying suitably as 0__changed•

Figure 2 shows a hand-oriented coordinate system attached to the manipu-

lator of Figure i. ¥

L

X
Z

--×

c "/V

U

Figure 2

IIanipulator with Hand-Oriented Coordinate System

Tile u direction is the reach direction, v_ile v and w are mutually perpendicular

and perpendicular to u. Then _e have

6

iO

= _3x31
:o
i

OOOil
I

v

w

c

(2n)

where

R ----"

cos d 0

0 I

L.

sin c

cog C

o

0

(2i)
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Appreciation of Forces i_ Manipulation

Anyone who has operated a remote manipulator knows that there is more to

manipulation than repositioning the manipulator's jaws. _ile some manipula-

tion tasks are largely rearrangement tasks, others are largely contact tasks,

in which accomplishment of the task depends heavily on the operator's apprecia-

tion of the contact forces or impedances encountered by the manipulator's jaws

as they strike or move in conjunction with portions of the task environment.

The same applies to artificial arms.

Naturally, few real tasks are exclusively rearrangement or contact tasks.

Yet while both features are involved, tasks can often be segmented into rear-

rangement subtasks separated by contact subtasks. The previous sections of

this paper have been concerned with easing the accomplishment of the rear-

rangement subtasks. In this section I _Tish to speculate on the applicability

of this work to the accomplishment of contact tasks, especially in the area of

powered prostheses.

Host prototype powered artificial arms are rate controlled. Except for

what can be felt by the stump, there is no force feedback. This plus visual

feedback may be sufficient for an elbow prosthesis, since only one degree of

freedom is involved. The Boston arm is force controlled and has a local force

feedback loop which will cause the arm to drop if the load is increased and the

amputee does not increase the EMC signal level. This loop has been sbown ef-

fective in increasing the amputee's awareness of applied loads [i0].

Contact tasks include at least two broad class_:_, passive tasks and active

ones. A well known example of the former is that of opening a door or turninF_

a crank. People (and operators of force feedback manipulators) are F_reatly

aided in such tasks by appreciating the increase in impedance to motion which

accompanies a drift of the hand or jaw from the preferred circular trajectory.

An example of the latter is cutting meat. This requires one to apply forces in

a relatively freely chosen direction, to modify force and direction based on

varying impedance, and to detect through varying impedance that the task has

been completed.

Let us consider accomplishing such tasks with a six de_ree of freedom powered

arm having local force feedback loops at each joint similar to that in the

Boston arm. Passive contact tasks might be possible, since the arm _ou!d cer-

tainly accomodate itself to the desired trajectory, provided that the amputee

knew which EHG signals to strengthen or weaken (to keep the arm and load moving)

and which to leave alone (to provide the accomodation). The first set corres-

ponds to those motors _Those motions can be resolved into hand motion along the

desired trajectory while the second set corresponds to those whose motions can

be resolved into hand motion normal to that trajectory.* As the arm moves, the

composition of these sets changes. One may s_ecu!ate that visual feedback will

be of little avail in determining which motors or muscle pairs are in which set.

Rather, the operator should have resolved feedback: some combination of the

strain _auge readings from the !oca] fee_bac_ loops should Be displaye_ to b_ _

*This is not meant to imply that the sets are mutually exclusive.
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so that he may determine which motors meet low impedance (the first set) and

which meet high impedance (the second set). Active contact ta_1_ nay not be

possible at all without such feedback.

We can relate the mathematics of this type of feedback to the discussions

in the previous sections as follows. If the muscle pairs (or nerves or what-

ever) are connected to the motors of a six degree of freedom Boston arm* one-

to-one, with no resolved motion, then a vector of EHG signals is related to the

vector of motor speeds by

E_'G= _ (22)

if the arm is moving unopposed by the environment. If the [2IG signals are strong

enov.gh that a six vector of external force F_e caused by contacting part of the

environment does not activate any of the local feedbach loops, then Fe, Ax, the

arm displacement caused l,y F_e, and K, the stiffness matrix of the a_va, are re-

lated by

Fe = K Ax (23)

This Ax, _.fllich may be quite small and thus difficult to utilize for visual feed-

back, will correspond to a A8 of

A0 = j-! Ax (24)

if we assume that the limbs are much stiffer than the Joints. At each joint

there is a strain gauge whose reading is related only to tl_e corresponding A88

so that a vector of strain gauge readings is _iven by

c = 1_ ^o (25)

where D is a diagonal matrix. Then

-! _:-l (2_)¢ =DJ Fe

If a feedback signal s is sent to each muscle pair (applied by some kind of

"tickler"), then it would be logical to set

s = c (27)

so that

s = D j-1 _._-iT_e (28)

and if D = dl, where d is a scalar, then

*l_lis is hypothetical, of course, since no such arm exists at this time.
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s -- d j-i K-I Ye (20)

= d A_ (compare to (22)) (3n)

so that; as expected° the tickled muscles correspond to those _hose activation

cause the external force to be resisted.

then

If the muscles are connected to the motors so as to produce resolved motion,

E-_G = J =

Now, it makes sense to set

s = J c 02)

so that

s = JDJ -I K -I Fe (B3)

= d K -I Fe (34)

= ,,_̂--^ (con-are to (B!)) (B5)

if D =dl. Thus again the tickled muscles correspond to those _hose motion cause

Fe to be counteracted. Note that we could set

s = KJe (36)

which leads to

s = d Fe (37)

Now the external force vector itself is being displayed to the muscles.

Equation (30) shows that unresolved muscle-tp-motor and strain gau_e-to-

muscle hookups will enable the amputee to detect which components of _0 can be

changed with little resistance from the environment and which will be resisted.

Equation (35) shows that resolved hookups enable the _iputee to detect which

components of x can be changed _rith little environmental resistance and which

meet larger resistance. Inasmuch as the force information in the latter hook-

up can be correlated directly with visual data concerning the environment and

the hand (perhaps limited to motions along lo_r resistance directions), it may

be that the latter hookup would be preferable.

Since no experiments have been performed, ho_Teverp it is premature to say

which of these (or other) schemes would be of the most assistance to an amputee.

It is fair to say, though, that something of this sort will be better than nothing.
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Conclusions

_e mathematics of multi-degree of freedon manipulators and prosth*ses

has been m1_!yzed. If we are content to work with rates, then the problem is

linear, regardless of the arm configuration, provided that no motor variables

hit their stops. We show that the operator can obtain control of motion easily

along "world coordinates" if the control actions are modified by the inverse

of the arm's Jacobian matrix. This allows us to choose among several interest-

ing coordinate systems in which to control. A redundant arm can be "programmed"

to obey certain useful and relevant constraints during motion, constraints

which would be difficult to obey with conventional one-to-one rate control.

l_ne above formulations are also relevant in providing force feedback to amputees

with EHG controlled prostheses and we speculate that multi-degree of freedom

prostheses would be easier to learn and more applicable to everyday contact

tasks if so designed.
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34. Evaluationof a New Aircraft Controller

Concept for the SST

JohnDeShonWarner

The Boeing Company

ABSTRACT

A new primary controller design which has the purpose of increasing the
visible area on the SST instrument panel is reported. Results from a prelimi-

nary fixed base SST simulator study show that the concept is feasible from a

manual control standpoint, but that more work is required to define optimum
force-feel characteristics and the influence of motion.

INTRODUCTION

The many new display concepts being explored for modern aircraft have

created new problems for the instrument panel designer in his efforts to satisfy

requirements for proper.location and visibility of these instruments. Some of
these new displays are the large format variety which have little flexibility of

location from a human factors standpoint. An example is the advanced instru-
_,_t n.n_l IFi_. 1_ bein_ studied for application to the SST aircraft. A signifi-

cant portion of this panel would be hidden from view by the massive control
column and wheel used currently in commercial jet transports. As a result,

efforts are underway to develop a new primary controller for the SST which

would increase panel visibility.

It appears that refinement of the conventional column and wheel design
will not solve the problem. Instead, entirely new approaches are necessary,

some of which are reported in Ref. 1. Yet another design, shown in Fig. 2,

is among those being studied for the SST. These are the Advanced Pilot's

Controls which operate by sliding fore and aft for pitch inputs and pivoting

about the shaft axes for roll inputs.

This design resulted from the desire not only to provide greater usable

panel space but to maintain a conventional electro-mechanical control system

as opposed to a totally electronic system. It is also felt that pilot transition

to this concept would be easier than to the fully electronic sidearm type which
has received considerable attention elsewhere.

There are two apparent differences when using the Advanced Pilot's

Controls as opposed to operation of the conventional transport-type column
and wheel. First, roll motion is about a pivot point roughly 3 inches directly

below the hand rather than about a pivot point 6 to 7 inches interior to each

hand. Second, the hands are displaced further apart with the Advanced Pilot's
Controls. It is not felt that the latter consideration would create any special

problems. However, the new type of roll motion requires different coordina-
tion and muscular activity which could conceivably make control more difficult.
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There are several problems that must be resolved whenever a new con-

troller design such as this one is proposed. These include the following:

• Anthropometric design. New problems on leg and knee interference
arise.

Force-feel characteristics. Reduced moment arm in roll requires
alteration of force characteristics from those associated with the
conventional wheel.

• Mechanical design constraints. Resultant force-feel characteristics

may not be optimum.

• Pilot transition.

These problems raise the general question of the level of manual control per-
formance with the new controller as compared to that with the conventional
controller.

PRELIMINARY SIMULATOR STUDY

A preliminary experimental evaluation using an SST simulator was con-

ducted to answer the following questions: Are there any differences in manual

control performance between the Advanced Pilot's Controls and the conventional

column and wheel? And, what are the potential problems, if any, associated

with application of this concept to transport aircraft ? As this was a prelimi-

nary study, it was of limited scope. Therefore, direct application of the
results is subject to several restrictions:

• Effects of motion were not considered.

• Anthropometric design was not optimized, but was feasible.

• Force-feel characteristics were not optimized but were near optimal.

• Force-feel characteristics did not represent the exact limitations

which may be imposed by the actual control system for the aircraft.

A fixed base SST simulator was used for the evaluation. The cockpit

was tied into an SDS 9300 digital computer which simulated a representative
SST configuration at any of three Mach numbers: 0.25, 1.2, and 2.7. The

cockpit was configured as shown in Fig. 3. with a conventional column and
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wheel on the left-hand side and with the Advanced Pilot's Controls on the right-

hand side. Both stations were equipped with the standard flight instruments
for the SST.

Six professional pilots were used in the evaluation which consisted of

performing various maneuvers with both the conventional and the new controller

designs. The types of maneuvers flown are listed below. (Each maneuver was

of fixed duration.)

(1) Standard climbing and descending turns.

(2) Straight and level with engine failures.

(3) Straight and level with turbulence.

(4) Instrument landing approach (low speed only).

(5) Command-following.

Each pilot flew these maneuvers at two different speed regimes with each

controller. The order of maneuvers was that shown above, while the sequence

of speed regimes and controller type was varied to counterbalance the effects

of learning.

The representative flight maneuvers, (1) through (4), both normal and

abnormal, were chosen to lend a degree of realism to the study and to include

those conditions which are known to be demanding of the pilot. In addition,

their inclusion in the order shown insured that the pilot was familiar with both

the speed regime and the controller by the time the command-following maneu-
vers were reached.

The command-following maneuvers were two-dimensional tracking tasks

with random-appearing pitch and roll commands. These tasks were included

in the evaluation as it was felt that individual pilot techniques with resultant

variability among pilots for the representative flight maneuvers would obscure

the effect of controller-type on performance. The command profiles were

quite severe, so that the worst-case attitude maneuvers that might ever be

encountered were simulated. Both continuous and stepwise command profiles

were used, each of two minutes duration.

Several different quantitative measures were formed to evaluate perfor-

mance with each controller for each maneuver. As it was not within the scope
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of this preliminary evaluationto conductextensiveanalysesof performance
characteristics, the measureswere chosento yield a rapid determinationof
overall performancetrends. Besidesthe usual root-mean-square valuesof
several important flight parameters, time-on-target scores were recorded
for the normal and abnormalflight maneuvers. Thesescoreswere asfollows:

Total time that headingrate exceeded+1 deg./sec.

Total time that roll rate exceeded+0.5 deg./sec.

Total time that altitude rate exceeded+5feet/sec.
m

In addition to recording the root-mean-square values of controller dis-

placement, a criterion was formed to provide some index of the frequency of

the displacement. This latter measure, referred to as Control Reversal Count,

is given by the number of times the direction of control movement changed
within the specified maneuver time interval. The measure was implemented

so that small motions and jitter would not be counted. This was accomplished

using the technique illustrated in Fig. 4, which put a deadband on control dis-

placement and sampled the signal _w_y 200 _,l_ii_ui_d_, a i-ate con_idci_ably
less than the frame rate of the simulation.

Each participating pilot responded to a detailed written questionnaire
after the tests. The questionnaire was designed to elicit their subjective

evaluation of the controllers as well as to gather information for future im-

provements or changes to the controllers.

Selection of controller force levels, specifics of the maneuvers, and

tolerance zones for the performance criteria was based on exploratory simu-

lation tests. With such an empirical technique, the values chosen were not

necessarily the best.

RESULTS AND CONCLUSIONS

The results for the representative flight maneuvers did not show any

consistent differences between controllers. There was a_suggestion, however,

of a greater number of reversals of control movement about the roll axis for

the Advanced Pilot's Controls for some of the maneuvers. Typical results are

presented in Fig. 5.

The command-following maneuvers did show some degradation in roll

performance for the Advanced Controls in terms of RMS values of roll angle
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error. This trend seems to be correlated with a greater number of control

movement reversals. These results are indicated in.Figs. 6 and 7. A more

thorough analysis of the data obtained during the step commands is required
before the results can be put in a useful form.

The results have indicated that some refinement in the force-feel char-

acteristics is required, primarily an increase in the level of viscous damping
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about the roll axis. This would serve the purpose of making roll control
.... •_ .... _ 1_o_ n_,_ cn nv,_-,qhnnt, and should be _videneed bv a decrease

in the number of control movement reversals for these controls.

From these results and from the responses to the questionnaires, it is

concluded that the basic controller concept is acceptable from a manual control

standpoint. It is not felt that results from a moving-base simulation program
would alter this conclusion, but that they would have some impact on the final

detailed design.

FUTURE WORK

Additional study and development of the Advanced Pilot's Controls is

being considered:

Refinement of force-feel characteristics. Efforts will be made

to optimize those characteristics while taking into account con-

straints imposed by the actual control system. This activity
will be conducted in fixed base simulators, with possible addi-

tional refinement following completion of moving base simulator
evaluations.

Refinement of control handle design. The recurring desire to

keep force levels low establishes the need to increase the effec-
tive moment arm of the controllers in roll. Handle configura-

tions as illustrated here have a moment arm equal to roughly

3 inches, while various other concepts have larger moment arms.

These other concepts, which still employ the double shafts,

will be evaluated in mockup form and in fixed-base simulators.

Subsequently, both the most promising handle configurations
and associated force-feel characteristics will be evaluated and

refined in moving-base simulator tests.
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Honeywell analysis performed on the back-up stabilization and control

system for the Apollo project included man-in-the-loop studies for the service

module reaction control system. The primary objectives for these studies were

to establish procedures and techniques (both for standard operation and in the

event of failures in some of the reaction jets) and to estimate the propellant

consumption. The test setup included a 140 amplifier analog simulation, an

electronic reaction jet breadboard and a cockpit mockup. The purpose of this

paper is to discuss three of the more interesting findings of these studies:

fast-time operation, maneuvers with failed reaction jets and use of product-of-

rate terms in the equations of motion.

!. Fast-time Operation

Or.e ef the b_mrnd,,ats of the service module reaction control system man-

in-the-loop studies was a technique for saving time in the simulation of space-
craft midcourse orientation maneuvers. We had an extended schedule of tests

and limited time. By the nature of the problem, these maneuvers are time-

consuming. Furthermore, they are tedious for the subject; there are long

periods of inactivity. A modification in the simulation permitting a change to

10 times real time during inactive periods resulted in a significant time saving

in conducting the tests. The largest angular rate used in our studies was 0.5

degree per second (per axis). The somewhat obvious reason for such low

rates is to save propellant in the maneuver. With this as a maximum, our

tests sometimes ran as long as 20 minutes for one maneuver. The use of

fast time as requested by the subject during the coast period permitted comple-

tion of a lengthy test program on schedule, as well as repetition of/runs where

deemed necessary in a number of cases. Another important factor is that this

technique reduced computer drift problems in otherwise lengthy runs. Before

using this technique we ran the same problem with both fast time and real time

and found that the results were comparable with either technique.

2. Maneuvers with Failed Reaction Jets

a. Orientation

The Apollo service module has four clusters (quads) of four reaction
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jets usedto change orientation and perform ullage maneuvers under
conditions of failed reaction jet quads. Opposite quad failures

initially posed a difficult problem for orientation maneuvers. A

solution devised in the tests using the flight director attitude indica-

tor (FDAI) actually made the maneuver easier, in the sense that it

took the guess work out of the problem. Assume that all the pitch

jets are out. A required pitch attitude change can be introduced

into the FDAI system. The indicator system can be used efficient-

ly to handle the problem in the remaining control axis. The tech-

nique was to roll the vehicle until the FDAI pitch command needle

was nulled, then to yaw the vehicle, keeping the pitch needle

hulled with the roll jets. Thus precision attitude orientation with

economic propellant consumption could be obtained in all three

axes even in the absence of jets in one axis.

Do Ullage

A translational maneuver called "ullage" is sometimes required

before the service propulsion system is fired. This is done using
the same jets as used in orientation maneuvers, but in this case

fired in a combination to provide thrust parallel to the long axis
of the vehicle. The ullage with adjacent quads failed was a severe

problem, since rotational torques were introduced in this maneuver.

The purpose of the ullage is to get the fuel and oxidizer to the rear

of the tanks; the propellant may be floating anywhere in the tank in

weightless flight. It was found possible to combine an orientation

change with the movement of the propellant to the rear of the tank.

Figure 1 illustrates the method. The jets were fired in the transla-

tional mode, providing an incremental translation with the induced

rotation. Initially the propellant moves to the forward end of the

tanks. Approximately mid-way in the maneuver the direction of

firing of the jets was reversed; by this means the angular motion

was arrested, while the propellant moved to the rear of the tanks.

Ideally, the propellant moved to the rear of the tank when the

angular motion stopped in approximately the orientation required

for the beginning of the firing of the service propulsion system,

though great precision is not required. The initial angular orienta-

tion and the length of firing for both single jet ullage and two jet

ullage were determined analytically. The method worked well in
simulator tests.
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3. Product-of-Rate Terms in the Equationsof Motion

Mid-course angular orientation maneuvers with the command-service

modules were possible with several modes of operation. These included rate

Co m_nd_ acceleration command and minimum impulse. Service module

reaction control system tests results suggest that rate command is a relatively

poor method of maneuvering the spacecraft. This is true partly because of

the difficulty of holding the rotational control in a fixed position. A second

important reason follows: The "complete" equations of motion of the vehicle

e/ DESIRED_ V DIRECTION

i. INITIAL REVERSEULLAGE

DESIREDz_V DIRECTION

FUEL 2. FORWARDULLAGEBEGUN

t =tl+

Figure I.

............ t =t2

3. ULLAGECOMPLE[E

Ullage with adjacent quads failed.
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include product-of-rateterms, underlined in Figure 2. As a result of later
analytical consideration, these originally neglectedterms were addedto the
simulation. Whereasin an aircraft theseproduct-of-rateterms are far over-
shadowedby aerodynamicforces, they are very important in the vacuumof
space. Their effect canbe seenin Figure 3. Assuminga maneuverstarting
with the equalrates in all axes, which is typical of the necessarily arbitrary
but reasonableconstraints in our study, the rates in oneaxis may evenchange
sign, as indicated. Nowassumethat we use rate command. In the general
casethere will be anangular acceleration in the pitch andthe yaw axis until
the rates reach the edgeof the deadband,then the jets will pulse as often as

WHEN NO EXTERNALTORQUESARE PRESENT

IT); (cl- pr) _lxx + (_"+ pq) Ix'--x'lXz+ (q2_ r2)
Ixx

Cl = (i"- Pq) lyyly--_z+ (_ + qr) IXYlyy" (p2_ r2) lyylXZ pr(IXXkl_.__-I)

ixz lyz Ixy ( Ixx'_i" : (1_- qr) _ + ((I + pr) _ + (p2_ q2) _ _ Pq. 1 - Izz /

WITH THE ASSUMPTION OF NEGLIGIBLE PRODUCTS OF INERTIA,

(_ = pr(l-lx._._X)iyy

-pq(1-IxxIzz I

Figure 2. Simplified equations of motion.
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necessaryto maintain the commandedrates. Sinceholdingthe commanded
rate is, in general, unnecessary,propellantwill be expendedneedlessly.
Results of our tests showthat accelerationcommandplus minimum impulse
was foundto be anacceptableandefficient technique.

It is recommendedthat similar simulations always include product of
rates in the equationsof motionin order to familiarize subjectswith the
problems they can introduce.
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Rate history (a) without control inputs

(acceleration command) and (b) with

proportional rate command.
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